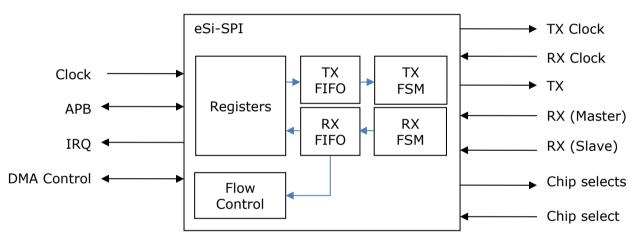


eSi-SPI

1 Contents


1	Contents	2
2	Overview	3
3	Hardware Interface	4
4	Software Interface	6
4.1	Register Map	6
4.2	Interrupts	12
4.3	Bit Ordering	12
4.4	Chip Select Generation	12
5	Revision History	14

2 Overview

The eSi-SPI core can be used to implement full-duplex, synchronous, serial communications. It supports the following features:

- Master or slave operation.
- Programmable word size (1 to 32 bits).
- Programmable bit ordering (MSB first / LSB first).
- Programmable clock polarity (CPOL) and phase (CHPA).
- Programmable bit rate.
- Automatic and manual chip-select generation.
- Multiple chip-select outputs.
- Configurable TX and RX FIFO.
- Configurable support for parallel as well as serial transfers.
- Supports multi-master and multi-slave operation.
- Auto TX and RX to reduce bus bandwidth requirements.
- AMBA 3 APB slave interface.
- DMA flow-control interface.

Figure 1: eSi-SPI

3 Hardware Interface

Module Name	esi_apb_spi
HDL	Verilog
Technology	Generic
Source Files	esi_apb_spi.v, esi_fifo.v, esi_async_small_fifo.v, esi_peripheral_flow_control.v, esi_sync.v, esi_sync_n.v, esi_global_include.v, esi_global_cfg_include.v, esi_i2c_cfg_include.v

Configuration Option	Values	Description
ASYNC_SLAVE	TRUE, FALSE	Determines whether the slave interface is implemented asynchronously (sck_in is used as a clock) or synchronously (sck_in is re-sampled to clk)

Table 1: Configuration Options – Defined in esi_spi_cfg_include.v

Port	Туре	Description
tx_fifo_depth	Integer	Specifies the depth of the TX FIFO. Minimum of 2 and value must be a power of 2
rx_fifo_depth	Integer	Specifies the depth of the RX FIFO. Minimum of 2 and value must be a power of 2
fifo_width	Integer	Specifies the width of the FIFOs. Valid range is [1,BITS]
data_pins	Integer	Specifies the width of the tx data and rx data busses.
		Valid range is [1, fifo_width]
chip_select_pins	Integer	Specifies the width of the <pre>tx_chip_select_n</pre> bus. Valid
		range is [1, BITS]
sckz_reset	Bit	Reset value for the io_control.sckz register
txdz_reset	Bit	Reset value for the io_control.txdz register
csz_reset	Bit	Reset value for the io_control.csz register
apb_data_width	Integer	Width of APB data bus
apb_address_width	Integer	Width of APB address bus

Table 2: Parameters

Port	Direction	Width	Description
clk	Input	1	Clock used for serial data transmission and reception. This clock must be enabled when cactive is asserted. This clock will be divided by the value in the cycles_per_bit register.
pclk	Input	1	APB clock
presetn	Input	1	APB reset, active-low
paddr	Input	apb_address_width	APB address. Only 8 LSBs are used
psel	Input	1	APB slave select
penable	Input	1	APB enable
pwrite	Input	1	APB write
pdebug	Input	1	APB noninvasive debug read
pwdata	Input	apb_data_width	APB write data
rx_data	Input	data_pins	Receive data in master mode
rx_data_slave	Input	data_pins	Receive data in slave mode
sck_in	Input	1	Receive clock. Only used in slave

			mode
rx_chip_select_n	Input	1	Receive chip select, active-low. Only used in slave mode
tx_ack	Input	1	Acknowledges <pre>tx_ready</pre> after transfer complete
rx_ack	Input	1	Acknowledges rx_ready after transfer complete
cactive	Output	1	Indicates clk should be active
pready	Output	1	APB ready
prdata	Output	apb_data_width	APB read data
pslverr	Output	1	APB slave error
slave	Output	1	Indicates SPI is in slave mode, rather than master mode
sck_out	Output	1	Transmit clock. Only valid in master mode
<pre>sck_out_enable</pre>	Output	1	Indicates sck should be an output when high (master mode) or an input or high-Z when low (slave mode or when disabled)
tx_data	Output	data_pins	Transmit data
tx_data_out_enable	Output	1	Indicates tx_data should be driven outputs when high (master mode or slave mode and rx_chip_select_n asserted) or high-Z when low
tx_chip_select_n	Output	chip_select_pins	Transmit chip select, active-low. Only used in master mode
<pre>tx_chip_select_n_ out_enable</pre>	Output	1	Indicates tx_chip_select_n should be driven outputs when high or high-Z when low
interrupt_n	Output	1	Interrupt request, active-low
tx_ready	Output	1	Indicates device can accept new data
rx_ready	Output	1	Indicates device has data to be read

Table 3: I/O Ports

For complete details of the APB signals, please refer to the AMBA 3 APB Protocol v1.0 Specification available at:

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

The SPI does not include internal synchronizing flip-flops. These should be implemented externally for the <code>rx_data_slave</code>, <code>rx_chip_select_n</code> and <code>sck_in</code> ports if the transmitting clock domain is asynchronous to <code>clk</code> and <code>ASYNC_SLAVE</code> is <code>FALSE</code>. For maximum slave performance, synchronizers should not be implemented when <code>ASYNC_SLAVE</code> is <code>TRUE</code>.

4 Software Interface

4.1 Register Map

Register	Address offset	Access	Description
tx_data	0x00	W	Transmit register
rx_data	0x04	R	Receive register
status	0x08	R/W	Status register
control	0x0c	R/W	Control register
cycles_per_bit	0x10	R/W	Cycles per bit register
txae_thresh	0x14	R/W	Transmit FIFO almost empty threshold
rxaf_thresh	0x18	R/W	Receive FIFO almost full threshold
tx_count	0x1c	R	Count of entries used in TX FIFO
rx_count	0x20	R	Count of entries used in RX FIFO
auto_trx_control	0x24	R/W	Auto TRX control register
auto_trx_count	0x28	R/W	Auto TRX count register
cs_control	0x2c	R/W	Chip select control register
cs_enable	0x30	R/W	Chip select enable register
cs_assert_bits	0x34	R/W	Chip select assert bits register
cs_deassert_bits	0x38	R/W	Chip select deassert bits register
cs_idle_bits	0x3c	R/W	Chip select idle bits register
io_control	0x40	R/W	I/O control register

Table 4: Register Map

4.1.1 Transmit Data Register

Data to be transmitted over the serial interface should be written to the transmit register, in order to be written to the TX FIFO. The transmit data register should not be written to while the TXF bit in the status register is set, otherwise data loss may occur. The number of bits transmitted is determined by the control.BPW register.

BITS-1

ТΧ

Figure 2: Format of the tx_data register

4.1.2 Receive Data Register

Data that is received over the serial interface and stored in the RX FIFO can be read in the receive register. A read from the received data register will remove the data from the RX FIFO, unless pdebug is high. Setting pdebug high allows a debugger to display the first element in the RX FIFO, without affecting the program being debugged.

BITS-1

RX

Figure 3: Format of the rx_data register

4.1.3 Status Register

0

The status register contains a selection of flags that indicate the current status of the SPI. To clear a bit in the status register, write a 1 to it. Writing 0 will leave it unchanged.

15	14	13	12		7	6	5	4	3	2	1	0
RXAF	TXAE	В		-		RXO	RXF	RXE	TXU	TXO	TXF	TXE

Figure 4: Format of the status register

Register	Values	Description
TXE	0 - Not empty 1 - Empty	Transmit FIFO empty
TXF	0 - Not full 1 - Full	Transmit FIFO full
ТХО	0 - No overflow 1 - Overflow	Transmit FIFO overflow. Sticky
TXU	0 - No underrun 1 - Underrun	Transmit FIFO underrun. Sticky. Not valid for asynchronous slave
RXE	0 - Not empty 1 - Empty	Receive FIFO empty
RXF	0 - Not full 1 - Full	Receive FIFO full
RXO	0 - No overflow 1 - Overflow	Receive FIFO overflow. Sticky
В	0 – Idle 1 – Busy	Indicates whether the SPI bus is busy. A chip- select should not be deasserted until this indicates idle
TXAE	0 – Not almost empty 1 – Almost empty	Transmit FIFO almost empty
RXAF	0 – Not almost full 1 – Almost full	Receive FIFO almost full

Table 5: Fields of the status register

4.1.4 Control Register

The control register contains a selection of flags that control the operation of the SPI.

15	10	9	8	7	6	5	4	3	2	1	0
BPW		Р	RF	RXIE	TXIE	CPOL	CPHA	BO	WS	М	E

Figure 5: Format of the control register

Register	Values	Description
E	0 - Disabled 1 - Enabled	Enables the SPI. When disabled, data will not be received or transmitted
М	0 - Master 1 - Slave	Operating mode
WS	0 - 8-bits 1 - 16-bits	Word size. Only used if control.BPW equals 0
BO	0 - MSB first 1 - LSB first	Bit ordering
СРНА	0 - Sample on leading edge1 - Sample of trailing edge	Clock phase
CPOL	0 - Idle low 1 - Idle high	Clock polarity
TXIE	0 - Disabled	Transmit interrupt enable

0

	1 - Enabled	
RXIE	0 - Disabled 1 - Enabled	Receive interrupt enable
RF	0 – Do not reset 1 – Reset FIFOs	Reset FIFOs. When written with a 1, transmit or receive FIFOs will be cleared. This bit clears automatically
Ρ	0 – Serial 1 – Parallel	When data_pins is greater than 1, this controls whether data is transmitted serially (only on the least significant bit of the tx_data or rx_data bus) or in parallel
BPW	0 - BITS	Bits per word. Specifies the number of bits that are transmitted and received. For parallel transfers, this value needs to be divisible by data pins

Table 6: Fields of the control register

4.1.5 Cycles Per Bit Register

The cycles per bit register is a 16-bit integer that determines how many cycles of the clock, clk, the transmit clock, sck_out, is held high for and low for, when in master mode. Use of a 16-bit register provides support for a wide range of clock frequencies and bit rates. The minimum value for cycles_per_bit is 2. When set to 2, each high and low phase of sck_out is 1 clk cycle, resulting in a total period of cycles_per_bit. When set to an odd value, the low phase will last for an extra cycle.

The cycles_per_bit register is not used in slave mode. When ASYNC_SLAVE is FALSE, the maximum sck_in frequency is 1/8th of clk. When ASYNC_SLAVE is TRUE sck_in may run at higher frequencies.

15

Figure 6: Format of the cycles_per_bit register

4.1.6 Transmit FIFO Almost Empty Threshold Register

The transmit FIFO almost empty threshold register sets the count of used entries in the transmit FIFO, below which, the status.TXAE flag and tx ready will be set.

15		log2(tx_fifo_depth)	0
AEIE	-	TH	

Figure 7: Format of the txae_thresh register

Register	Values	Description
TH	0 - tx_fifo_depth	Almost empty threshold
AEIE	0 – Interrupt disabled 1 – Interrupt enabled	Almost empty interrupt enable

Table 7: Fields of the txae_thresh register

4.1.7 Receive FIFO Almost Full Threshold Register

The receive FIFO almost full threshold register sets the count of used entries in the receive FIFO, above which, the status.RXAF flag and rx_ready will be set.

15		log2(rx_fifo_depth)	0
AFIE	-	TH	

Figure 8: Format of the rxaf_thresh register

Register	Values	Description
TH	0-rx_fifo_depth	Almost full threshold
AFIE	0 – Interrupt disabled 1 – Interrupt enabled	Almost full interrupt enable

Table 8: Fields of the rxaf_thresh register

4.1.8 Transmit FIFO Count Register

The transmit FIFO count register indicates the count of used entries in the transmit FIFO.

log2(tx_fifo_depth)	0
COUNT	

Figure 9: Format of the tx_count register

4.1.9 Receive FIFO Count Register

The receive FIFO count register indicates the count of used entries in the receive FIFO.

	log2(rx_fifo_depth)	0	
COUNT			
Figure 10: Format of the rx count register			

4.1.10 Auto TRX Control Register

The auto transmit / receive control register contains a selection of flags that control automatic transmit or receive by the SPI. When auto_trx_control.AT=1, the TX FIFO will have the value 0 written to it, the number of times specified by the auto_trx_count register. When auto_trx_control.AT=2, the RX FIFO will be read the number of times specified by the auto_trx_count register and the values will be discarded. This feature can be used to eliminate APB accesses to the corresponding FIFOs, when unidirectional transfers are being performed. When in auto-transmit master mode, the SPI will not transmit while the RX FIFO is full, to avoid data loss.

0 AT

Figure 11: Format of the auto_trx_control register

Register	Values	Description
AT	0 – Disabled	Enables auto-transmit of auto-receive
	1 – Auto-transmit	

2 - Auto-receive

n

Table 9: Fields of the auto_trx_control register

4.1.11 Auto TRX Count Register

The auto transmit / receive count register indicates how many times the TX FIFO will be written (when auto_trx_control.AT=1) or the RX FIFO will be read (when auto trx control.AT=2).

BITS-1

COUNT

Figure 12: Format of the auto_trx_count register

4.1.12 Chip Select Control Register

The chip select control register provides registers to control the operation of the chip select outputs, $tx_chip_select_n$.

	1	0
-	М	S

Figure 13: Format of the cs_control register

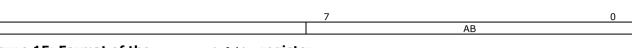
Register	Values	Description
S	0 – Active low 1 – Active high	Sense of chip-select outputs
М	0 – Automatic 1 – Manual	Whether the chip-selects are asserted automatically or manually

Table 10: Fields of the cs_control register

4.1.13 Chip Select Enable Register

The chip select enable register is a bitmask of chip_select_pins bits that determines which chip-select outputs will be asserted when a transfer occurs. Typically, as SPI transfers are bidirectional, this should just be a single bit, to ensure that contention does not occur on the receive data signals. However, if contention is prevented at a system level, it is possible to set multiple bits in this register to transmit data simultaneously to multiple slaves.

En	chip_s	elect_pins-1	2	1	0
	En		F2	E1	E0


Figure 14: Format of the cs_enable register

Register	Values	Description
En	0 – Disabled 1 – Enabled	Determines whether the corresponding chip select output with be asserted when a transfer
		occurs

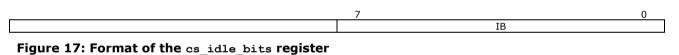
Table 11: Fields of the cs_enable register

4.1.14 Chip Select Assert Bits Register

The chip select assert bits register determines how many bit periods the chip select outputs, $tx_chip_select_n$, will be asserted for before outputting the clock or data, when in master mode (control.M equals 0) and automatic chip select control (cs control.M equals 0).

Figure 15: Format of the cs_assert_bits register

4.1.15 Chip Select Deassert Bits Register


The chip select deassert bits register determines how many bit periods after the data is transmitted, before the chip select outputs, tx_chip_select_n, will be deasserted, when in master mode (control.M equals 0) and automatic chip select control (cs_control.M equals 0).

_ _ _

4.1.16 Chip Select Idle Bits Register

The chip select idle bits register determines the minimum number of bit periods after the chip select outputs, tx_chip_select_n, are deasserted, before they will be asserted again, when in master mode (control.M equals 0) and automatic chip select control (cs_control.M equals 0). This value will be exceeded if data does not become available in the TX FIFO.

4.1.17 IO Control Register

The I/O control register allows the outputs from the SPI to be put in a high-Z state when the SPI is disabled, to allow another SPI master control of the bus.

Figure 18: Format of the io_control register

Register	Values	Description
SCKZ	0 – Driven 1 – High-Z	Determines whether <pre>sck_out_enable</pre> is asserted when <pre>control.E</pre> is 0, as thus whether the serial clock output is driven or high-Z when the SPI is disabled
TXDZ	0 – Driven 1 – High-Z	Determines whether tx_data_out_enable is asserted when control.E is 0, as thus whether the transmit data lines are driven or high-Z when the SPI is disabled
CSZ	0 – Driven	Determines whether

TXD7

1 – High-Z	<pre>tx_chip_select_n_out_enable is asserted when control.E is 0, as thus whether the chip-select outputs are driven or high-Z when the SPI is disabled</pre>
	disabled

Table 12: Fields of the io_control register

4.2 Interrupts

The SPI supports the following interrupts.

- Transmit interrupt
- Transmit FIFO almost empty interrupt
- Receive interrupt
- Receive FIFO almost full interrupt

The transmit interrupt will be raised when the transmit buffer is empty and the TXIE flag in the control register is set to 1. This indicates that the transmitter has no data to transmit.

The transmit FIFO almost empty interrupt will be raised when the transmit FIFO is almost empty as determined by tx thresh.TH and the AEIE flag in the tx thresh register is set to 1.

The receive interrupt will be raised when the receiver buffer is not empty and the RXIE flag in the control register is set to 1. This indicates that the receiver has received some data.

The receive FIFO almost full interrupt will be raised when the receive FIFO is almost full as determined by rx thresh.TH and the AFIE flag in the rx thresh register is set to 1.

4.3 Bit Ordering

The control.BO register determines the bit ordering of the data written from the FIFO as it is transmitted on the serial / parallel data bus.

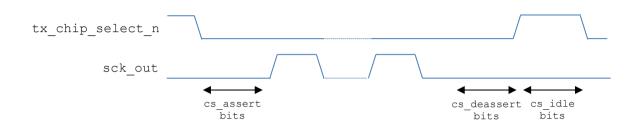

Value	data_pins	control.BO	Transmitted data
h17	1	0 – MSB	$tx_data[0] = 0,0,0,1,0,1,1,1$
h17	1	1 – LSB	$tx_data[0] = 1, 1, 1, 0, 1, 0, 0, 0$
h17	4	0 – MSB	$tx_data[0] = 0,0$ $tx_data[1] = 0,1$ $tx_data[2] = 0,1$ $tx_data[3] = 1,1$
h17	4	1 – LSB	$tx_data[0] = 1,1$ $tx_data[1] = 1,0$ $tx_data[2] = 1,0$ $tx_data[3] = 0,0$

 Table 13: Bit Ordering Examples

4.4 Chip Select Generation

When automatic chip select generation is enabled (cs_control.M equals 0), the chip select outputs, tx_chip_select_n, are automatically asserted before transfers occur and are automatically deasserted when a transfer completes and the transmit FIFO is empty.

The time between the assertion of the chip select outputs and the transmission of data can be controlled by the <code>cs_assert_bits</code> register. The time between the transmission of the last bit of data and the deassertion of the chip select is controlled by the <code>cs_deassert_bits</code> register. A minimum delay between deassertion and reassertion of the chip selects is controlled by the <code>cs_idle_bits</code> register. Each of these registers are specified in bit periods, and thus are multiplied by the <code>value</code> in the <code>cycles_per_bit</code> register.

Figure 19: Automatic Chip Select Generation Timing

To keep throughput high, the chip select is not automatically deasserted between words, if there is more data in the transmit FIFO. If this is desired, the transmit FIFO should only be written with one word at a time, and the status.BUSY flag should be checked to be clear, before writing further data in to the transmit FIFO.

The chip select will be deasserted when a transfer is complete and there is no data in the transmit FIFO. If you wish for the chip select to be asserted continuously, chip select control should be set to manual (cs_control.M equals 1). In this mode, the cs_assert_bits, cs_deasert_bits and cs_idle_bits registers are not used.

5 Revision History

Hardware	Software	Description		
Revision	Release			
1	1.0.0	Initial release.		
2	2.3.2	Added tx_ack and rx_ack ports.		
³ 3.2.12		Added TX and RX FIFOs.		
		Added status.TXAE field.		
		Added status.RXAF field.		
		Added txae_thresh register.		
		Added rxaf_thresh register.		
		Added control.RF field.		
		Added control.BITS field.		
4	3.3.9	Added tx_count register.		
		Added rx_count register.		
5	4.0.2	Added auto_trx_control register.		
		Added auto_trx_count register.		
6	4.1.1	Added status.B field.		
7	5.0.4	Added data_pins parameter.		
		Added control.P field.		
		Renamed rx_data_master as rx_data.		
		Renamed rx_clk as sck_in.		
		Rename tx_clk as sck_out.		
		Added sck_out_enable pin.		
8	5.0.7	Added ASYNC_SLAVE configuration option.		
		Made status.TXO and status.RXO flag sticky.		
		control.CPOL and control.CPHA valid in slave mode as well as		
		master mode.		
9	5.0.8	Added chip_select_pins parameter.		
		Added cs_control register.		
		Added cs_enable register.		
		Added cs_assert_bits register.		
		Added cs_deassert_bits register.		
		Added cs_idle_bits register.		
10	6.0.2	Added pdebug input.		
11	6.0.3	${\tt tx_ready}$ is driven by TX FIFO almost empty, rather than not		
		full.		
		<pre>rx_ready is driven by RX FIFO almost full, rather than not</pre>		
1.0		empty.		
12	6.0.4	Added tx_data_out_enable and		
		<pre>tx_chip_select_n_out_enable ports.</pre>		
		Added io_control register.		

Table 14: Revision History