

eSi-SG-DMA

 eSi-SG-DMA

Version 8.0.0 2 of 23 © 2022 eSi-RISC, All Rights Reserved

1 Contents

1 Contents ___ 2
2 Overview ___ 3
3 Hardware Interface ___ 4

3.1 Flow Control Interface __ 5
4 Software Interface ___ 7

4.1 Register Map ___ 7
4.2 Descriptor Format __ 12
4.3 Interrupts ___ 15
4.4 Error Handling ___ 15
4.5 Stopping a Transfer ___ 15
4.6 Channel Priority __ 16
4.7 Examples ___ 16

5 Revision History __ 23

 eSi-SG-DMA

Version 8.0.0 3 of 23 © 2022 eSi-RISC, All Rights Reserved

2 Overview

The eSi-SG-DMA core can be used to implement 1D and 2D memory-to-memory, memory-to-

peripheral, peripheral-to-memory and peripheral-to-peripheral data transfers, with scatter and

gather functionality. It supports the following features:

• Memory-based, linked-list transfer descriptors.

• 3 descriptor sizes to balance functionality and setup overhead.

• Configurable number of channels.

• Configurable number of peripherals (up to 64).

• Programmable X and Y count, increment, access size and burst length.

• CRC and IP checksum calculation.

• AMBA 3 AHB-lite slave interface for control register access.

• Dual AMBA 3 AHB-lite master interfaces for simultaneous read and write.

eSi-SG-DMA

AHB ReadMaster

IRQ

Registers

DMA Engine

Figure 1: eSi-SG-DMA

Flow Control

AHB Slave

AHB WriteMaster

 eSi-SG-DMA

Version 8.0.0 4 of 23 © 2022 eSi-RISC, All Rights Reserved

3 Hardware Interface

Module Name cpu_ahb_sg_dma

HDL Verilog

Technology Generic

Source Files cpu_ahb_sg_dma.v, cpu_fifo.v

Configuration Option Values Description
CRC_ENABLED TRUE, FALSE Determines whether CRC calculation is supported
IP_CHECKSUM_ENABLED TRUE,FALSE Determines whether IP checksum calculation is

supported

Table 1: Configuration Options

Port Type Description
channels Integer Specifies the number of channels implemented. 1-16
peripherals Integer Specifies the number of peripherals connected. 1-64
fifo_depth Integer Specifies the depth of the FIFO used for holding data

during transfers. Must be 4 or greater and a power of 2
address_width Integer Specifies the width of src/dst address registers. Min of

10 bits
count_width Integer Specifies the width of count registers. Min of 8 bits
inc_width Integer Specifies the width of increment registers. Min of 4 bits
ahb_data_width Integer Specifies the width of AHB data busses. 32 or 64

Table 2: Parameters

Port Direction Width Description
s_hclk Input 1 Slave interface, AHB clock
s_hresetn Input 1 Slave interface, AHB reset, active-low
s_haddr Input 32 Slave interface, AHB address
s_hburst Input 3 Slave interface, AHB burst type
s_hmastlock Input 1 Slave interface, AHB locked transfer
s_hprot Input 4 Slave interface, AHB protection
s_hsize Input 3 Slave interface, AHB size
s_htrans Input 2 Slave interface, AHB transfer type
s_hwdata Input ahb_data_width Slave interface, AHB write data
s_hwrite Input 1 Slave interface, AHB write
s_hready Input 1 Slave interface, AHB ready
s_hsel Input 1 Slave interface, AHB select
s_hready Output 1 Slave interface, AHB ready
s_hrdata Output ahb_data_width Slave interface, AHB read data
s_hresp Output 1 Slave interface, AHB response
r_hclk Input 1 Master read interface, AHB clock. Must be

the same frequency and synchronous to
s_hclk

r_hresetn Input 1 Master read interface, AHB reset, active-low
r_hready Input 1 Master read interface, AHB ready
r_hrdata Input ahb_data_width Master read interface, AHB read data
r_hresp Input 1 Master read interface, AHB response
r_haddr Output 32 Master read interface, AHB address
r_hburst Output 3 Master read interface, AHB burst type
r_hmastlock Output 1 Master read interface, AHB locked transfer
r_hprot Output 4 Master read interface, AHB protection

 eSi-SG-DMA

Version 8.0.0 5 of 23 © 2022 eSi-RISC, All Rights Reserved

r_hsize Output 3 Master read interface, AHB size
r_htrans Output 2 Master read interface, AHB transfer type
r_hwdata Output ahb_data_width Master read interface, AHB write data
r_hwrite Output 1 Master read interface, AHB write
w_hclk Input 1 Master write interface, AHB clock. Must be

the same frequency and synchronous to
s_hclk

w_hresetn Input 1 Master write interface, AHB reset, active-low
w_hready Input 1 Master write interface, AHB ready
w_hrdata Input ahb_data_width Master write interface, AHB read data
w_hresp Input 1 Master write interface, AHB response
w_haddr Output 32 Master write interface, AHB address
w_hburst Output 3 Master write interface, AHB burst type
w_hmastlock Output 1 Master write interface, AHB locked transfer
w_hprot Output 4 Master write interface, AHB protection
w_hsize Output 3 Master write interface, AHB size
w_htrans Output 2 Master write interface, AHB transfer type
w_hwdata Output ahb_data_width Master write interface, AHB write data
w_hwrite Output 1 Master write interface, AHB write
tx_ready Input peripherals Indicates peripheral can accept new data
rx_ready Input peripherals Indicates peripheral has data to be read
tx_ack Output peripherals Acknowledges tx_ready after transfer

complete
rx_ack Output peripherals Acknowledges rx_ready after transfer

complete
interrupt_n Output 1 Interrupt request, active-low
w_hclk_cactive Output 1 Clock active. When deasserted, w_hclk can

be gated
r_hclk_cactive Output 1 Clock active. When deasserted, r_hclk can

be gated
debug_active Input 1 Indicates when debugger is active

Table 3: I/O Ports

For complete details of the AHB signals, please refer to the AMBA 3 AHB-Lite Protocol v1.0

Specification available at:

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

The DMA does not include internal synchronizing flip-flops. These should be implemented

externally for the rx_ready and tx_ready ports if the transmitting clock domain is

asynchronous to w/r_hclk.

3.1 Flow Control Interface

The flow control interface allows peripherals to indicate to the DMA when they have data

available to be read or are able to accept new write data.

• The tx_ready signal indicates the peripheral can accept new data.

• The rx_ready signal indicates the peripheral has data to be read.

A simple handshaking mechanism is employed to ensure that the DMA will not generate an

underflow or overflow in the peripheral.

• The tx_ack signal acknowledges the tx_ready signal

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

 eSi-SG-DMA

Version 8.0.0 6 of 23 © 2022 eSi-RISC, All Rights Reserved

• The rx_ack signal acknowledges the rx_ready signal

The DMA will only perform a single transaction (which may consist of multiple beats, as

controlled by the BURST register) after the ready signal is asserted. It will then assert the

corresponding ack signal. This will be held high until the ready signal is cleared. The

peripheral should only then reassert the ready signal after the ack has cleared and it is ready

to proceed with another transaction.

Figure 2: Flow Control Interface Handshaking

ready

ack

AHB

 eSi-SG-DMA

Version 8.0.0 7 of 23 © 2022 eSi-RISC, All Rights Reserved

4 Software Interface

4.1 Register Map

Each SG-DMA channel has its own set of registers, as illustrated in Table 4: Register Map. In

this table, N, indicates the channel number, which ranges from 0 to channels-1.

Register Address offset Access Description
next_address[N] 0x80*N+0x00 - Address of next descriptor
src_address[N] 0x80*N+0x04 R Source address register
dst_address[N] 0x80*N+0x08 R Destination address register
src_control[N] 0x80*N+0x0c - Channel N source control register
dst_control[N] 0x80*N+0x10 - Channel N destination control register
count_x[N] 0x80*N+0x14 R Count X register
count_y[N] 0x80*N+0x18 R Count Y register
src_inc_x[N] 0x80*N+0x1c - Source increment X register
src_inc_y[N] 0x80*N+0x20 - Source increment Y register
dst_inc_x[N] 0x80*N+0x24 - Destination increment X register
dst_inc_y[N] 0x80*N+0x28 - Destination increment Y register
status[N] 0x80*N+0x40 R/W Status register
control[N] 0x80*N+0x44 R/W Control register
current[N] 0x80*N+0x48 R/W Address of current descriptor
calc_control[N] 0x80*N+0x50 R/W Calculation control
crc[N] 0x80*N+0x54 R/W CRC
polynomial[N] 0x80*N+0x58 R/W CRC polynomial
ip_checksum[N] 0x80*N+0x5c R/W IP checksum

Table 4: Register Map

The registers that are not writable are programmed via memory based descriptors.

4.1.1 Next Address Register

The next address register contains the address of the next descriptor to process.

BITS-1 0

Figure 3: Format of the next_address register

4.1.2 Source Address Register

The source address register contains the address to copy from.

address_width-1 0

Figure 4: Format of the src_address register

4.1.3 Destination Address Register

The destination address register contains the address to copy to.

 eSi-SG-DMA

Version 8.0.0 8 of 23 © 2022 eSi-RISC, All Rights Reserved

address_width-1 0

Figure 5: Format of the dst_address register

4.1.4 Source Control Register

The source control register contains a selection of flags that control the operation of the SG-

DMA channel with respect to the source data.

15 10 9 7 6 4 3 2 1 0

PIDX - BURST SIZE T

Figure 6: Format of the src_control register

Register Values Description
T 0 – Memory

1 – Peripheral

2 – None

Source address type. When set to peripheral

type, the rx_ready[PIDX] signal from the

peripheral must be asserted before a transfer will

take place. When set to memory, the transfer will

occur unconditionally. When set to none,

src_address is not used and source data will just

be zeros
SIZE 0 – 1 byte

1 – 2 bytes

2 – 4 bytes

3 – 8 bytes

Size of each access when T=1. This drives the

AHB hsize signal. src_address must be aligned

according to the transfer size. When T=0, this

should be set to 0, and access size will be

determined automatically depending upon count

and alignment
BURST 0 – Undefined (INCR)

1 – 1 beat (SINGLE)

2 – 4 beats (INCR4)

3 – 8 beats (INCR8)

4 – 16 beats (INCR16)

Maximum length of burst. This drives the AHB

hburst signal. The actual burst length may be

shorter, depending upon the FIFO size and count

of elements to transfer

PIDX 0 – peripherals-1 Peripheral index. Determines which of the

rx_ready signals should be used for flow control

when source address type T=1

Table 5: Fields of the src_control register

4.1.5 Destination Control Register

The destination control register contains a selection of flags that control the operation of the

SG-DMA channel with respect to the destination data.

15 10 9 7 5 4 3 2 1 0

PIDX - BURST SIZE T

Figure 7: Format of the dst_control register

Register Values Description
T 0 – Memory

1 – Peripheral

2 – None

Destination address type. When set to peripheral

type, the tx_ready[PIDX] signal from the

peripheral must be asserted before a transfer will

take place. When set to memory, the transfer will

occur unconditionally. When set to none,

 eSi-SG-DMA

Version 8.0.0 9 of 23 © 2022 eSi-RISC, All Rights Reserved

dst_address is not used and the data will be

discarded
SIZE 0 – 1 byte

1 – 2 bytes

2 – 4 bytes

3 – 8 bytes

Size of each access when T=1. This drives the

AHB hsize signal. dst_address must be aligned

according to the transfer size. When T=0, this

should be set to 0, and access size will be

determined automatically depending upon count

and alignment
BURST 0 – Undefined (INCR)

1 – 1 beat (SINGLE)

2 – 4 beats (INCR4)

3 – 8 beats (INCR8)

4 – 16 beats (INCR16)

Maximum length of burst. This drives the AHB

hburst signal. The actual burst length may be

shorter, depending upon the FIFO size and count

of elements to transfer

PIDX 0 – peripherals-1 Peripheral index. Determines which of the

tx_ready signals should be used for flow control

when destination address type T=1

Table 6: Fields of the dst_control register

4.1.6 Count X Register

The count X register contains the number of transfers that should occur in the X dimension.

The number of bytes transferred in the X dimension is (1 << src_control.SIZE) * count_x.

If src_control.SIZE and dst_control.SIZE differ, the count of transfers to the destination,

is count_x * (1 << src_control.SIZE) / (1 << dst_control.SIZE).

For transfers where the address type is memory (src_control.T or dst_control.T = 0),

reads or writes can be coalesced, providing that the address is appropriately aligned, count is

sufficiently high, and the address increment is the same as the size. For example, specifying a

copy where control.T=0, control.SIZE=0, address=0, count_x=4, inc_x=1 can result in a

single word accesses, instead of 4-byte accesses. Coalescing is not performed when the

address type is peripheral.

count_width-1 0

Figure 8: Format of the count_x register

4.1.7 Count Y Register

The count Y register contains the number of iterations, minus 1, of transfers in the X direction

(the Y dimension). So, for a 1-dimensional transfer, set count_y to 0. The total number of

bytes transferred is ((1 << src_control.SIZE) * count_x) * (count_y + 1).

count_width-1 0

Figure 9: Format of the count_y register

4.1.8 Source Increment X Register

 eSi-SG-DMA

Version 8.0.0 10 of 23 © 2022 eSi-RISC, All Rights Reserved

The source increment X register contains a signed integer that is added to the src_address

register after each transfer in the X dimension.

inc_width-1 0

Figure 10: Format of the src_inc_x register

4.1.9 Source Increment Y Register

The source increment Y register contains a signed integer that is added to the src_address

register after each transfer in the Y dimension.

inc_width-1 0

Figure 11: Format of the src_inc_y register

4.1.10 Destination Increment X Register

The destination increment X register contains a signed integer that is added to the

dst_address register after each transfer in the X dimension.

inc_width-1 0

Figure 12: Format of the dst_inc_x register

4.1.11 Destination Increment Y Register

The destination increment Y register contains a signed integer that is added to the

dst_address register after each transfer in the Y dimension.

inc_width-1 0

Figure 13: Format of the dst_inc_y register

4.1.12 Status Register

The status register contains a selection of flags that indicate the current status of the SG-DMA

channel. The AC flag is read-only. To clear the DC, DCO or ER flags, write a 1 to it. Writing 0

will leave it unchanged.

 3 2 1 0

- ER DCO DC AC

Figure 14: Format of the status register

Register Values Description
AC 0 – Not complete

1 – Complete

All descriptors complete

DC 0 – Not complete

1 – Complete

Descriptor complete

DCO 0 – No overflow Descriptor complete overflow. This indicates the

 eSi-SG-DMA

Version 8.0.0 11 of 23 © 2022 eSi-RISC, All Rights Reserved

1 – Overflow DC flag was already set when a descriptor was

completed
ER 0 – No error

1 – Error

Indicates an error occurred during (such as hresp

not OK during a read or write or an unsupported

value in a descriptor).

Table 7: Fields of the status register

4.1.13 Control Register

The control register contains a selection of flags that control the operation of the SG-DMA

channel.

 5 4 3 2 1 0

 DD SP ERIE DCIE ACIE E

Figure 15: Format of the control register

Register Values Description
E 0 – Disabled

1 – Enabled

Enables the SG-DMA channel

ACIE 0 – Disabled

1 – Enabled

All descriptors complete interrupt enable

DCIE 0 – Disabled

1 – Enabled

Descriptor complete interrupt enable

ERIE 0 – Disabled

1 – Enabled

Error interrupt enable

SP 0 – Continue

1 – Stop

Stop transfer immediately. Data may be lost

DD 0 – Enable during debug

1 – Disable during debug

Disable channel (after current burst) when

debugger is active

Table 8: Fields of the control register

4.1.14 Current Address Register

The current address register contains the address of the current descriptor being processed.

When the SG-DMA is idle, the current register should be written with the address of the first

descriptor in order to start processing. Writing the current register with 0, will set status.AC

to 1.

BITS-1 0

Figure 16: Format of the current register

4.1.15 Calculation Control Register

The calculation control register contains a selection of flags that control calculations (CRC/

IPChecksum) that can be performed on data passed through the SG-DMA channel.

 2 1 0

- IPE BO CE

Figure 17: Format of the calc_control register

 eSi-SG-DMA

Version 8.0.0 12 of 23 © 2022 eSi-RISC, All Rights Reserved

Register Values Description
CE 0 – Disabled

1 – Enabled

Enables CRC calculation. Only implemented if

CRC_ENABLED is TRUE
BO 0 – LSB first

1 – MSB first

Bit ordering for CRC. Only implemented if

CRC_ENABLED is TRUE
IPE 0 – Disabled

1 – Enabled

Enable IP checksum calculation. Only

implemented if IP_CHECKSUM_ENABLED is TRUE

Table 9: Fields of the control register

4.1.16 CRC Register

The CRC register contains the computed CRC value. It should be initialised before a CRC

operation is started to the initialisation value specified by the corresponding CRC standard

(typically all zeros or all ones). The CRC register is only implemented if CRC_ENABLED is TRUE.

BITS-1 0

Figure 18: Format of the crc register

4.1.17 Polynomial Register

The CRC polynomial register contains the CRC polynomial coefficients. The most significant bit

of the polynomial is implicit and does not need to be written into this register. For example,

CRC-32 has a 33-bit polynomial, but only the lower 32-bits are required. If a polynomial has

fewer than 32-bits, it should be left aligned in this register, with the least-significant bits being

set to 0. The CRC polynomial register is only implemented if CRC_ENABLED is TRUE.

BITS-1 0

Figure 19: Format of the polynomial register

4.1.18 IP Checksum Register

The IP checksum register contains a 16-bit IP checksum. It should be initialised to 0. The IP

checksum register is only implemented if IP_CHECKSUM_ENABLED is TRUE.

15 0

Figure 20: Format of the ip_checksum register

4.2 Descriptor Format

The SG-DMA transfer descriptors are stored in memory and are read by the SG-DMA. Three

descriptor formats are supported:

 eSi-SG-DMA

Version 8.0.0 13 of 23 © 2022 eSi-RISC, All Rights Reserved

• a tiny descriptor for basic transfers that minimizes memory footprint and descriptor

read overhead

• a small descriptor that supports the same functionality as the tiny descriptors with the

addition of the next_address field for chaining descriptors

• a full descriptor that has a larger memory footprint but offers full use of all of the SG-

DMA’s features.

Small and full descriptors can be chained together via the next_address field. When the SG-

DMA completes one descriptor, if the next_address field is non-NULL, the descriptor at that

address is read and the corresponding transfer takes place. Chained descriptors can be a

mixture of small and full descriptors.

An interrupt can be raised after a descriptor is completed by setting its desc_control.DCIE

field to 1.

With the exception of the desc_control field, the format of the descriptor fields corresponds

to the format of the SG-DMA’s registers.

4.2.1 Tiny and Small Descriptors

Register Address offset Description
desc_control 0x00 Descriptor control
src_address 0x04 Source address
dst_address 0x08 Destination address
count 0x0c Count

Table 10: Tiny Descriptor Format

Register Address offset Description
desc_control 0x00 Descriptor control
next_address 0x04 Address of next descriptor
src_address 0x08 Source address
dst_address 0x0c Destination address
count 0x10 Count

Table 11: Small Descriptor Format

15 10 9 8 7 6 5 3 2 1 0

PIDX BURST SIZE MODE DCIE DT

Figure 21: Format of the desc_control field for Tiny and Small Descriptors

Register Values Description
DT 1 – Small

2 – Tiny

Descriptor type

DCIE 0 – Disable interrupt

1 – Enable interrupt

Descriptor complete interrupt enable

MODE 0 – Memory to memory

1 – Memory to peripheral

2 – Peripheral to memory

3 – Memory to FIFO

4 – FIFO to memory

5 – None to memory

6 – Memory to none

Transfer mode

SIZE 0 – 1 byte Size of each access

 eSi-SG-DMA

Version 8.0.0 14 of 23 © 2022 eSi-RISC, All Rights Reserved

1 – 2 bytes

2 – 4 bytes

3 – 8 bytes
BURST 0 – 1 beat

1 – 4 beats

2 – 8 beats

3 – 16 beats

Length of burst

PIDX 0 – peripherals-1 Peripheral index. Determines which peripheral to

use for flow control, if MODE is not 0

Table 12: Fields of the desc_control field for Tiny and Small Descriptors

When a tiny or small descriptor is read, the SG-DMA’s registers are set according to the

following logic:

next_address = tiny ? NULL : next_address

src_address = src_address

dst_address = dst_address

src_control.T = (desc_control.MODE == 2) || (desc_control.MODE == 4)

src_control.SIZE = desc_control.SIZE

src_control.BURST = desc_control.BURST

src_control.PIDX = desc_control.PIDX

dst_control.T = (desc_control.MODE == 1) || (desc_control.MODE == 3)

dst_control.SIZE = desc_control.SIZE

dst_control.BURST = desc_control.BURST

dst_control.PIDX = desc_control.PIDX

count_x = count

count_y = 0

src_inc_x = desc_control.MODE == 4 ? 0 : (1 << desc_control.SIZE)

src_inc_y = 0

dst_inc_x = desc_control.MODE == 3 ? 0 : (1 << desc_control.SIZE)

dst_inc_y = 0

control.DCIE = desc_control.DCIE

The total number of bytes copied is (1 << desc_control.SIZE) * count.

4.2.2 Full Descriptor

Register Address offset Description
desc_control 0x00 Descriptor control
next_address 0x04 Address of next descriptor
src_address 0x08 Source address
dst_address 0x0c Destination address
src_control 0x10 Source control
dst_control 0x14 Destination control
count_x 0x18 Count X
count_y 0x1c Count Y
src_inc_x 0x20 Source address X increment
src_inc_y 0x24 Source address Y increment
dst_inc_x 0x28 Destination address X increment
dst_inc_y 0x2c Destination address Y increment

Table 13: Full Descriptor Format

 11 10 9 8 7 3 2 1 0

 IPE CE - DCIE T

Figure 22: Format of the desc_control field for Full Descriptors

 eSi-SG-DMA

Version 8.0.0 15 of 23 © 2022 eSi-RISC, All Rights Reserved

Register Values Description
DT 0 – Full Descriptor type
DCIE 0 – Disable interrupt

1 – Enable interrupt

Descriptor complete interrupt enable

CE 0 – No change

1 – Enable CRC

2 – Disable CRC

CRC enable

IPE 0 – No change

1 – Enable IP checksum

2 – Disable IP checksum

IP checksum enable

Table 14: Fields of the desc_control field for Full Descriptors

4.3 Interrupts

The SG-DMA supports the following interrupts.

• Per-channel all descriptors complete interrupt

• Per-channel descriptor complete interrupt

• Per-channel error interrupt

The all descriptors complete interrupt will be raised when the SG-DMA has finished the

transfer specified by the current descriptor and the next_address register is NULL. The AC flag

in the status register will be set 1 to indicate this. When the AC flag in the status register is

set to 1 and the ACIE flag in the control register is set to 1, the all descriptors complete

interrupt will be asserted. The AC flag is cleared when the current register is next written.

The descriptors complete interrupt will be raised when the SG-DMA has finished the transfer

specified by the current descriptor. The DC flag in the status register will be set 1 to indicate

this. When the DC flag in the status register is set to 1 and the DCIE flag in the control

register is set to 1, the descriptors complete interrupt will be asserted.

The error interrupt will be raised then the ER flag in the status register is 1 and the ERIE flag

in the control register is set to 1. This indicates an error was detected during either the

reading of a descriptor or the transfer specified by the descriptor.

4.4 Error Handling

When the SG-DMA detects a read or write error on the AHB bus, either the reading of the

descriptor will be terminated, or the transfer will be terminated. The termination may not be

immediate, as any burst in progress will be allowed to complete.

The SG-DMA will set the status.ER flag to indicate the error, and no further transfers will take

place on the corresponding channel until the flag is cleared. Before clearing the flag, the

current register should be set to NULL, otherwise the descriptor will be re-read. If chained

descriptors are being used, the current register should contain the address of the descriptor

that caused the error.

4.5 Stopping a Transfer

A transfer on DMA channel can be stopped by writing to the channel’s control.SP register.

The transfer may not stop immediately, as a burst that is in progress may need to be

 eSi-SG-DMA

Version 8.0.0 16 of 23 © 2022 eSi-RISC, All Rights Reserved

completed. When the transfer is stopped, the control.E register will be cleared to indicate

this.

To start a new transfer, the current register should first be written with 0, to set the

status.AC flag. The channel should be reenabled by setting control.E to 1, and then the

address of the new descriptor can be written to the current register.

4.6 Channel Priority

Transfers on the lowest valid channel have priority. For example, if the transfer specified by

channel 0 is ready to be processed as the same time as the transfer on channel 1, channel 0

will be completed first. A higher channel (with lower priority) may be switched to part way

through the transfer on a lower channel (with higher priority); if the transfer on the lower

channel cannot be completed due to a peripheral indicating it is not ready.

4.7 Examples

4.7.1 Memory to Memory Copy

To implement a memcpy(dest, src, n) like memory copy, to copy n bytes from dest to src,

a tiny descriptor can be initialised as follows:

esi_sg_dma_tiny_desc_t desc;

desc.desc_control = ESI_SG_DMA_DESC_MODE_M_TO_M | ESI_SG_DMA_DESC_TYPE_TINY;

desc.src_address = src;

desc.dst_address = dest;

desc.count = n;

4.7.2 Memory Set

To implement a memset(dest, c, n) like memory fill operation, that fills the first n bytes of

memory at the address dest with the value c, a full descriptor should be used, where the

source increment is set as 0, so that the same data is repeatedly copied:

esi_sg_dma_full_desc_t desc;

char c = 0x00;

desc.desc_control = ESI_SG_DMA_DESC_TYPE_FULL;

desc.next_address = NULL;

desc.src_address = &c;

desc.dst_address = dest;

desc.src_control = ESI_SG_DMA_MEMORY;

desc.dst_control = ESI_SG_DMA_MEMORY;

desc.count_x = n;

desc.count_y = 0;

desc.src_inc_x = 0;

desc.src_inc_y = 0;

desc.dst_inc_x = 1;

desc.dst_inc_y = 0;

 eSi-SG-DMA

Version 8.0.0 17 of 23 © 2022 eSi-RISC, All Rights Reserved

4.7.3 Memory Zero

To implement a bzero (dest, n) like memory zero operation, that zeros the first n bytes of

memory at the address dest, a tiny descriptor should be used, where the source type is set

as NONE. This halves the bus bandwidth compared to the memory set example above, as no

data has to be read, only written:

esi_sg_dma_tony_desc_t desc;

desc.desc_control = ESI_SG_DMA_DESC_MODE_N_TO_M | ESI_SG_DMA_DESC_TYPE_TINY;

desc.src_address = NULL;

desc.dst_address = dest;

desc.count = n;

4.7.4 Memory to FIFO

To copy a one-dimensional array of data from memory to a peripheral’s FIFO, a tiny descriptor

can be used. In this example, we copy a string to a UART’s transmit FIFO:

esi_sg_dma_small_desc_t desc;

char src_data[] = “hello”;

esi_device_info_t *uart_device;

esi_uart_t *uart;

desc.desc_control = (uart_device->dma << 10)

 | ESI_SG_DMA_DESC_BURST_1

 | ESI_SG_DMA_DESC_SIZE_BYTE

 | ESI_SG_DMA_DESC_MODE_M_TO_F

 | ESI_SG_DMA_DESC_TYPE_TINY;

desc.src_address = src_data;

desc.dst_address = &uart->tx_data;

desc.count = strlen(src_data);

The burst length should be set so that it is smaller than the destination FIFO’s depth. The size

of the access should be set to match the width of the destination FIFO.

4.7.5 Double Buffering (Ping-Pong Buffers)

When receiving data from a peripheral, double buffering can be used to ensure that a receive

buffer is always available to avoid data loss. Two buffers are used: buffer 0 for receiving data,

and buffer 1 for holding data that is being processed. When the receive buffer becomes full,

the buffers are swapped, and buffer 1 is used for receiving data, while buffer 0 is processed,

and so on.

To implement this, two small descriptors are used, and chained together in a circular loop. The

descriptor complete interrupt enable is set, so that after a buffer becomes full, an interrupt

handler can swap the buffers.

esi_sg_dma_small_desc_t desc0, desc1;

char buffers[2][BUF_SIZE];

int processing_buffer;

esi_device_info_t *uart_device;

esi_uart_t *uart;

desc0.desc_control = (uart_device->dma << 10)

 | ESI_SG_DMA_DESC_BURST_1

 eSi-SG-DMA

Version 8.0.0 18 of 23 © 2022 eSi-RISC, All Rights Reserved

 | ESI_SG_DMA_DESC_SIZE_BYTE

 | ESI_SG_DMA_DESC_MODE_F_TO_M

 | ESI_SG_DMA_DESC_DC_INT_ENABLE

 | ESI_SG_DMA_DESC_TYPE_SMALL;

desc0.next_address = &desc1;

desc0.src_address = &uart->rx_data;

desc0.dst_address = &buffers[0][0];

desc0.count = BUF_SIZE;

desc1.desc_control = (uart_device->dma << 10)

 | ESI_SG_DMA_DESC_BURST_1

 | ESI_SG_DMA_DESC_SIZE_BYTE

 | ESI_SG_DMA_DESC_MODE_F_TO_M

 | ESI_SG_DMA_DESC_DC_INT_ENABLE

 | ESI_SG_DMA_DESC_TYPE_SMALL;

desc1.next_address = &desc0;

desc1.src_address = &uart->rx_data;

desc1.dst_address = &buffers[1][0];

desc1.count = BUF_SIZE;

processing_buffer = 1;

void dma_interrupt_handler(void) {

 …

 /* Each time we get an descriptor complete interrupt, swap buffers. */

 processing_buffer ^= 1;

 process_data(buffers[processing_buffer]);

 …

}

If it is possible that processing a buffer may take longer than it does to fill one up with data,

triple buffering can be used. This simply adds a third buffer and descriptor.

4.7.6 Gather

Gather operations use multiple descriptors to combine multiple blocks of memory distributed

at random memory addresses in to one contiguous block. For example, this might be used in a

networking application, where different parts of a packet to be transmitted need to be

gathered together for transmission.

To achieve this, simply use one small descriptor per block of memory that is to be combined,

and chain them together:

esi_sg_dma_small_desc_t desc0, desc1, desc2;

char *src0, *src1, *src2;

int src0_size, src1_size, src2_size;

char *dst;

desc0.desc_control = ESI_SG_DMA_DESC_MODE_M_TO_M | ESI_SG_DMA_DESC_TYPE_SMALL;

desc0.next_address = &desc1;

desc0.src_address = src0;

desc0.dst_address = &dst[0];

desc0.count = src0_size;

desc1.desc_control = ESI_SG_DMA_DESC_MODE_M_TO_M | ESI_SG_DMA_DESC_TYPE_SMALL;

desc1.next_address = &desc2;

desc1.src_address = src1;

desc1.dst_address = &dst[src0_size];

desc1.count = src1_size;

 eSi-SG-DMA

Version 8.0.0 19 of 23 © 2022 eSi-RISC, All Rights Reserved

desc2.desc_control = ESI_SG_DMA_DESC_MODE_M_TO_M | ESI_SG_DMA_DESC_TYPE_SMALL;

desc2.next_address = NULL;

desc2.src_address = src2;

desc2.dst_address = &dst[src0_size+src1_size];

desc2.count = src2_size;

4.7.7 Scatter

Scatter operations are the opposite of gathers. They can be used to split up a contiguous block

of data to multiple random addresses.

esi_sg_dma_small_desc_t desc0, desc1, desc2;

char *dst0, *dst1, *dst2;

int dst0_size, dst1_size, dst2_size;

char *src;

desc0.desc_control = ESI_SG_DMA_DESC_MODE_M_TO_M | ESI_SG_DMA_DESC_TYPE_SMALL;

desc0.next_address = &desc1;

desc0.src_address = &src[0];

desc0.dst_address = dst0;

desc0.count = dst0_size;

desc1.desc_control = ESI_SG_DMA_DESC_MODE_M_TO_M | ESI_SG_DMA_DESC_TYPE_SMALL;

desc1.next_address = &desc2;

desc1.src_address = &src[dst0_size];

desc1.dst_address = dst1;

desc1.count = dst1_size;

desc2.desc_control = ESI_SG_DMA_DESC_MODE_M_TO_M | ESI_SG_DMA_DESC_TYPE_SMALL;

desc2.next_address = NULL;

desc2.src_address = &src[dst0_size+dst1_size];

desc2.dst_address = dst2;

desc2.count = dst2_size;

4.7.8 Endian Conversion

2D transfers can be used for reordering data, such as in an endian conversion, where the

most-significant bytes need to be swapped with the least significate bytes. For example, to

endian swap the array:

unsigned long src[4] = {0x11223344, 0x55667788, 0x99aabbcc, 0xddeeff00};

So that it becomes:

unsigned long dst[4] = {0x44332211, 0x88776655, 0xccbbaa99, 0x00ffeedd};

A full descriptor should be used, where the source X increment is 1, but the destination X

increment is -1, to reverse the data. The destination address therefore needs to start offset by

3, with a Y increment of 8 to jump to the next word.

esi_sg_dma_full_desc_t desc;

desc.desc_control = ESI_SG_DMA_DESC_TYPE_FULL;

desc.next_address = NULL;

desc.src_address = &src[0];

desc.dst_address = ((char)&dst[0]) + 3;

desc.src_control = ESI_SG_DMA_SIZE_BYTE | ESI_SG_DMA_MEMORY;

 eSi-SG-DMA

Version 8.0.0 20 of 23 © 2022 eSi-RISC, All Rights Reserved

desc.dst_control = ESI_SG_DMA_SIZE_BYTE | ESI_SG_DMA_MEMORY;

desc.count_x = 4;

desc.count_y = 3;

desc.src_inc_x = 1;

desc.src_inc_y = 0;

desc.dst_inc_x = -1;

desc.dst_inc_y = 8;

4.7.9 Deinterleave

2D transfers can be used to deinterleave data. For example, in an audio application, 16-bit left

and right samples may be stored interleaved, but need to be deinterleaved for individual

channel processing. For example, to deinterleave:

#define SAMPLES 6

#define CHANNELS 2

short src[SAMPLES*CHANNELS] = {

 0x0, 0x1000, 0x1, 0x1001, 0x2, 0x1002, 0x3, 0x1003, 0x4, 0x1004, 0x5, 0x1005

};

To:

short dest[SAMPLES*CHANNELS] = {

 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x1000, 0x1001, 0x1002, 0x1003, 0x1004, 0x1005

};

We use a full descriptor where the X increment steps through the samples for each channel,

and the Y increment steps through channels:

esi_sg_dma_full_desc_t desc;

desc.desc_control = ESI_SG_DMA_DESC_TYPE_FULL;

desc.next_address = NULL;

desc.src_address = &src[0];

desc.dst_address = &dst[0];

desc.src_control = ESI_SG_DMA_SIZE_BYTE | ESI_SG_DMA_MEMORY;

desc.dst_control = ESI_SG_DMA_SIZE_BYTE | ESI_SG_DMA_MEMORY;

desc.count_x = SAMPLES;

desc.count_y = CHANNELS-1;

desc.src_inc_x = BYTES_PER_SAMPLE * CHANNELS;

desc.src_inc_y = -BYTES_PER_SAMPLE * CHANNELS * SAMPLES + BYTES_PER_SAMPLE;

desc.dst_inc_x = BYTES_PER_SAMPLE;

desc.dst_inc_y = 0;

4.7.10 Matrix Transpose

2D transfers can be used to transpose the sub-elements of a matrix:

#define FULL_WIDTH 8

#define FULL_HEIGHT 8

#define WIDTH 4

#define HEIGHT 4

#define X_OFFSET 2

#define Y_OFFSET 2

char src[FULL_WIDTH*FULL_HEIGHT] = {

 8, 8, 8, 8, 8, 8, 8, 8,

 eSi-SG-DMA

Version 8.0.0 21 of 23 © 2022 eSi-RISC, All Rights Reserved

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 1, 2, 3, 4, 0, 0,

 0, 0, 1, 2, 3, 4, 0, 0,

 0, 0, 1, 2, 3, 4, 0, 0,

 0, 0, 1, 2, 3, 4, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 8, 8, 8, 8, 8, 8, 8, 8,

};

To:

char dst[FULL_WIDTH*FULL_HEIGHT] = {

 8, 8, 8, 8, 8, 8, 8, 8,

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 1, 1, 1, 1, 0, 0,

 0, 0, 2, 2, 2, 2, 0, 0,

 0, 0, 3, 3, 3, 3, 0, 0,

 0, 0, 4, 4, 4, 4, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 8, 8, 8, 8, 8, 8, 8, 8,

};

esi_sg_dma_full_desc_t desc;

desc.desc_control = ESI_SG_DMA_DESC_TYPE_FULL;

desc.next_address = NULL;

desc.src_address = &src[FULL_WIDTH*Y_OFFSET+X_OFFSET];

desc.dst_address = &dst[FULL_WIDTH*Y_OFFSET+X_OFFSET];

desc.src_control = ESI_SG_DMA_SIZE_BYTE | ESI_SG_DMA_MEMORY;

desc.dst_control = ESI_SG_DMA_SIZE_BYTE | ESI_SG_DMA_MEMORY;

desc.count_x = WIDTH;

desc.count_y = HEIGHT-1;

desc.src_inc_x = 1;

desc.src_inc_y = FULL_WIDTH-WIDTH;

desc.dst_inc_x = FULL_WIDTH;

desc.dst_inc_y = -FULL_WIDTH*WIDTH + 1;

4.7.11 Memory to Peripheral with Wrapping Address

Some eSi-Crypto APB cores require the data to be processed to be written to and then read

back from registers at successive addresses. These crypto cores typically work on small blocks

of data at a time (E.g. 128-bits / 16-bytes). In order to stream in and out a larger block of

data, a 2D transfer is required, as while the memory address may simply need to increment,

the peripheral address needs to wrap every 16 bytes.

The following example streams data in to the eSi-AES core using word sized accesses, in

blocks of 16-bytes, for a 128-bit AES operation. count_x is set to 16 / 4, as we need four 32-

bit word accesses to read 16 bytes. count_y is set to the number of 16-byte transfers needed

for the complete source data, minus 1. For the source data, the source address is set to

increment by 4 after each word is read. The destination address also increments by 4 after

each word is written, but then wraps backwords by 16 bytes, after every 16 bytes.

esi_sg_dma_full_desc_t desc;

esi_aes_t *aes;

char src[LENGTH];

desc.desc_control = ESI_SG_DMA_DESC_TYPE_FULL;

desc.next_address = NULL;

desc.src_address = src;

 eSi-SG-DMA

Version 8.0.0 22 of 23 © 2022 eSi-RISC, All Rights Reserved

desc.dst_address = &aes->data_in[0];

desc.src_control = ESI_SG_DMA_BURST_4

 | ESI_SG_DMA_SIZE_WORD

 | ESI_SG_DMA_MEMORY;

desc.dst_control = ESI_SG_DMA_BURST_4

 | ESI_SG_DMA_SIZE_WORD

 | ESI_SG_DMA_PERIPHERAL;

desc.count_x = 16 / 4;

desc.count_y = (LENGTH / 16) - 1;

desc.src_inc_x = 4;

desc.src_inc_y = 0;

desc.dst_inc_x = 4;

desc.dst_inc_y = -16;

4.7.12 Circular Buffer

A circular buffer can be implemented with a single descriptor that is chained to itself. So each

time the buffer is filled up, it immediately refills from the start.

esi_sg_dma_small_desc_t desc;

char buffer[BUF_SIZE];

esi_device_info_t *uart_device;

esi_uart_t *uart;

desc.desc_control = (uart_device->dma << 10)

 | ESI_SG_DMA_DESC_BURST_1

 | ESI_SG_DMA_DESC_SIZE_BYTE

 | ESI_SG_DMA_DESC_MODE_F_TO_M

 | ESI_SG_DMA_DESC_TYPE_SMALL;

desc.next_address = &desc;

desc.src_address = &uart->rx_data;

desc.dst_address = &buffer[0];

desc.count = BUF_SIZE;

How a circular buffer is read, depends on the speed of the data being received. Generally, it

would be unsafe to wait for the descriptor complete interrupt to be raised before trying to read

from the buffer, as if another element of data is received before the interrupt is handled, the

first element in the buffer would be lost. Instead, the data can be read from the buffer as it is

being filled up, by reading the count_x register as it is filled, to work out how much valid data

the buffer contains.

4.7.13 CRC

For any transfer, a CRC can be calculated on the data transferred. The CRC is calculated

across chained descriptors. Before starting a transfer, the crc register should be initialised

with the initial value appropriate for the desired CRC and the polynomial register with the

polynomial coefficients for the CRC. The calc_control.BO set to indicate whether data should

be processed LSB or MSB first. After the transfer is compete, the computed CRC value can be

read from the crc register.

If a CRC needs to be calculated on some data without copying it to a destination, the

dst_control.T field can be set to NONE, so that the data is only read, not written.

If only some parts of the data should have the CRC calculated for, the CE field in the full

descriptor can be used to disable or enable the calculation on a per descriptor basis.

 eSi-SG-DMA

Version 8.0.0 23 of 23 © 2022 eSi-RISC, All Rights Reserved

5 Revision History

Hardware

Revision

Software

Release

Description

1 4.0.3 Initial release.
2 4.1.14 Add CRC support.
3 6.0.3 Added debug_active input.

Added control.DD field.
4 6.0.4 Added address_width parameter.

Added count_width parameter.

Added inc_width parameter.
4 8.0.0 Added ahb_data_width parameter.

Table 15: Revision History

	eSi-SG-DMA
	1 Contents
	2 Overview
	3 Hardware Interface
	3.1 Flow Control Interface

	4 Software Interface
	4.1 Register Map
	4.1.1 Next Address Register
	4.1.2 Source Address Register
	4.1.3 Destination Address Register
	4.1.4 Source Control Register
	4.1.5 Destination Control Register
	4.1.6 Count X Register
	4.1.7 Count Y Register
	4.1.8 Source Increment X Register
	4.1.9 Source Increment Y Register
	4.1.10 Destination Increment X Register
	4.1.11 Destination Increment Y Register
	4.1.12 Status Register
	4.1.13 Control Register
	4.1.14 Current Address Register
	4.1.15 Calculation Control Register
	4.1.16 CRC Register
	4.1.17 Polynomial Register
	4.1.18 IP Checksum Register

	4.2 Descriptor Format
	4.2.1 Tiny and Small Descriptors
	4.2.2 Full Descriptor

	4.3 Interrupts
	4.4 Error Handling
	4.5 Stopping a Transfer
	4.6 Channel Priority
	4.7 Examples
	4.7.1 Memory to Memory Copy
	4.7.2 Memory Set
	4.7.3 Memory Zero
	4.7.4 Memory to FIFO
	4.7.5 Double Buffering (Ping-Pong Buffers)
	4.7.6 Gather
	4.7.7 Scatter
	4.7.8 Endian Conversion
	4.7.9 Deinterleave
	4.7.10 Matrix Transpose
	4.7.11 Memory to Peripheral with Wrapping Address
	4.7.12 Circular Buffer
	4.7.13 CRC

	5 Revision History

