

eSi-PWM

1 Contents

1	Contents	
2	Overview	3
3	Hardware Interface	
4	Software Interface	
4.1	Register Map	
4.2	Interrupts	7
5	Revision History	3

2 Overview

The eSi-PWM is a pulse width modulation waveform generator. It has the following features:

- Configurable number of PWM channels.
- Runtime programmable duty cycle from 0% to 100% and period, with configurable precision.
- AMBA 3 APB slave interface.

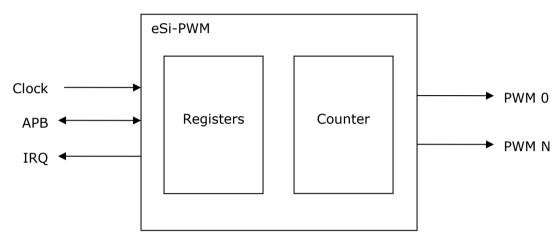


Figure 1: eSi-PWM

3 Hardware Interface

Module Name	cpu_apb_pwm		
HDL	Verilog		
Technology	Generic		
Source Files	cpu_apb_pwm.v		

Port	Туре	Description
bits	Integer	Specifies the number of bits in the counter. 1 – 15 / 31.
channels	Integer	Specifies the number of PWM channels. 1 – 8.

Table 1: Parameters

Port	Direction	Width	Description
clk	Input	1	Clock used for PWM counter. This must be active when clk cactive is asserted. It must be
			synchronous to pclk.
pclk	Input	1	APB clock. This must be active when pclk_cactive is asserted.
n maga + n	Toronout	4	4656.164.
presetn	Input	1	APB reset, active-low
paddr	Input	8	APB address
psel	Input	1	APB slave select
penable	Input	1	APB enable
pwrite	Input	1	APB write
pwdata	Input	16 / 32	APB write data
clk_cactive	Output	1	Clock active (for clk)
pclk_cactive	Output	1	Clock active (for pclk)
pready	Output	1	APB ready
prdata	Output	16 / 32	APB read data
pslverr	Output	1	APB slave error
interrupt_n	Output	1	Interrupt request, active-low
pwm	Output	channels	PWM outputs

Table 2: I/O Ports

For complete details of the APB signals, please refer to the AMBA 3 APB Protocol v1.0 Specification available at:

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

4 Software Interface

4.1 Register Map

Register	Address offset	Access	Description
status	0x00	R/W	Status register
control	0x04	R/W	Control register
wrap_comparator	0x08	R/W	Wrap comparator
comparator[N]	0x10+4*N	R/W	Comparator register for channel N
comp_inc[N]	0x30+4*N	W	Comparator increment for channel N
comp_inc_wraps[N]	0x50+4*N	W	Comparator increment wrap count for channel N
comp_inc_count[N]	0x70+4*N	R/W	Comparator increment count for channel N
wrap_inc	0xf0	W	Wrap increment
wrap_inc_wraps	0xf4	W	Wrap increment wrap count
wrap_inc_count	0xf8	R/W	Wrap increment count

Table 3: Register Map

4.1.1 Status Register

The status register contains a selection of flags that indicate the current status of the PWM. To clear a bit in the status register, write a 1 to it. Writing 0 will leave it unchanged.

1	0
WO	W

Figure 2: Format of the status register

Register	Values	Description
W	0 - No wrap	Wrapped flag. Indicates whether the counter has
	1 - Wrapped	wrapped
WO	0 - No wrap overflow	Wrapped overflow flag. Indicates if the $\ensuremath{\mathbb{W}}$ flag was
	1 - Wrap overflow	set when the counter wrapped

Table 4: Fields of the status register

4.1.2 Control Register

The control register contains a selection of flags that control the operation of the PWM.

1	0
WIE	Е

Figure 3: Format of the control register

Register	Values	Description
E	0 - Disabled 1 - Enabled	Enables the counter
WIE	0 - Disabled 1 - Fnabled	Wrap interrupt enable

Table 5: Fields of the control register

4.1.3 Wrap Comparator

The wrap comparator contains the value that the counter will count up to, before wrapping to 0.

bits-1 0

Figure 4: Format of the wrap_comparator register

4.1.4 Comparator

A comparator register is implemented for each PWM channel. When the value in a comparator register equals the value in the counter plus one, the corresponding PWM output changes from high to low. The PWM output will change from low to high when the counter wraps. The counter counts from 0 to the value held in the wrap compatator register.

In order to achieve a duty cycle of 0%, the comparator should be initialised to 0. To allow a duty cycle of 100% to be achieved, the comparator registers are 1 bit wider than the counter register. Therefore, to implement a duty cycle of 100%, set the comparator to a value 1 higher (2^{bits}) than the maximum value that can be represented in the counter (2^{bits} -1).

bits 0

Figure 5: Format of the comparator register

4.1.5 Comparator Increment

The comparator increment register contains a bits-bit signed integer that is added to the comparator. This register can be used to ramp up or down the duty cycle of the channel.

bits-1 0

Figure 6: Format of the comp_inc[N] register

4.1.6 Comparator Increment Wraps

The comparator increment wraps count register specifies the number of times the counter wraps before the comparator increment is applied. This can be used to control the speed at which the duty cycle is ramped up or down.

DIIS-1 0

Figure 7: Format of the comp inc wraps[N] register

4.1.7 Comparator Increment Count

The comparator increment count register specifies how many times the $comp_inc[N]$ register is added to the comparator[N] register.

bits-1 0

Figure 8: Format of the comp inc count[N] register

4.1.8 Wrap Increment

The wrap increment register contains a bits-bit signed integer that is added to the wrap comparator. This register can be used to ramp up or down the frequency / period of the counter.

bits-1 0

Figure 9: Format of the wrap inc register

4.1.9 Wrap Increment Wraps

The wrap increment wraps register specifies the number times the counter wraps before the wrap increment is applied. This can be used to control the speed at which the frequency / period of the counter is ramped up or down.

DITS-1 U

Figure 10: Format of the wrap inc wraps register

4.1.10 Wrap Increment Count

The wrap increment count register specifies many times the wrap_inc register is added to the wrap comparator register.

bits-1 0

Figure 11: Format of the wrap_inc_count register

4.2 Interrupts

The PWM supports a wrap interrupt. The wrap interrupt will be raised when the counter wraps to 0 and the WIE flag in the control register is set to 1. The wrap interrupt can be acknowledged by writing a 1 to the status.W flag.

5 Revision History

Hardware Revision	Software Release	Description
1	2.2.0	Initial release
2	2.9.0	Add wrap_comparator register
3	3.3.3	Added comp_inc registers
		Added wrap_inc registers

Table 6: Revision History