

eSi-I2C

 eSi-I2C

Version 7.0.0 2 of 17 © 2019 eSi-RISC, All Rights Reserved

1 Contents

1 Contents ___ 2
2 Overview ___ 3
3 Hardware Interface ___ 4
4 Software Interface ___ 6

4.1 Register Map ___ 6
4.2 Master Transactions ___ 10
4.3 Slave Transactions __ 14
4.4 Interrupts ___ 16

5 Revision History __ 17

 eSi-I2C

Version 7.0.0 3 of 17 © 2019 eSi-RISC, All Rights Reserved

2 Overview

The eSi-I2C core supports the following features:

• Multi-master / slave operation.

• Clock stretching.

• 7 and 10-bit addresses.

• Programmable bit rate.

• Configurable TX and RX FIFOs.

• AMBA 3 APB slave interface.

• DMA flow-control interface.

eSi-I2C

Clock

APB

IRQ SDA

Figure 1: eSi-I2C

DMA Control

SCL Registers
TX/RX
FSM

TX

FIFO

RX

FIFO

Flow

Control

 eSi-I2C

Version 7.0.0 4 of 17 © 2019 eSi-RISC, All Rights Reserved

3 Hardware Interface

Module Name esi_apb_i2c

HDL Verilog

Technology Generic

Source Files esi_apb_i2c.v, esi_fifo.v, esi_peripheral_flow_control.v,

esi_global_include.v, esi_global_cfg_include.v, esi_i2c_cfg_include.v

Configuration Option Values Description
SLAVE_ENABLED TRUE, FALSE Determines whether slave mode is supported

Table 1: Configuration Options – Defined in esi_i2c_cfg_include.v

Port Type Description
rx_fifo_depth Integer Specifies the depth of the RX FIFO. Minimum of 2 and

values must be a power of 2
tx_fifo_depth Integer Specifies the depth of the TX FIFO. Minimum of 2 and

values must be a power of 2
apb_data_width Integer Width of APB data bus
apb_address_width Integer Width of APB address bus

Table 2: Parameters

Port Direction Width Description
clk Input 1 Clock used for transmission and

reception state machine. This clock must

be enabled when cactive is asserted.

This clock must be synchronous to pclk

and clocked at the same frequency when

active.
pclk Input 1 APB clock
presetn Input 1 APB reset, active-low
paddr Input apb_address_width APB address. Only 8 LSBs are used
psel Input 1 APB slave select
penable Input 1 APB enable
pwrite Input 1 APB write
pdebug Input 1 APB noninvasive debug read
pwdata Input apb_data_width APB write data
scl_in Input 1 I2C clock in
sda_in Input 1 I2C data in
tx_ack Input 1 Acknowledges tx_ready after transfer

complete
rx_ack Input 1 Acknowledges rx_ready after transfer

complete
cactive Output 1 Clock active. When deasserted, clk can

be gated
pready Output 1 APB ready
prdata Output apb_data_width APB read data
pslverr Output 1 APB slave error
scl_out Output 1 I2C clock out
scl_out_enable Output 1 I2C clock output enable
sda_out Output 1 I2C data out
sda_out_enable Output 1 I2C output enable
interrupt_n Output 1 Interrupt request, active-low

 eSi-I2C

Version 7.0.0 5 of 17 © 2019 eSi-RISC, All Rights Reserved

tx_ready Output 1 Indicates device can accept new data
rx_ready Output 1 Indicates device has data to be read

Table 3: I/O Ports

For complete details of the APB signals, please refer to the AMBA 3 APB Protocol v1.0

Specification available at:

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php

For details of the I2C-bus specification, please refer to:

http://www.nxp.com/documents/user_manual/UM10204.pdf

The I2C does not include internal synchronizing flip-flops. These should be implemented

externally for the scl_in and sda_in ports if the transmitting clock domain is asynchronous to

clk.

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.nxp.com/documents/user_manual/UM10204.pdf

 eSi-I2C

Version 7.0.0 6 of 17 © 2019 eSi-RISC, All Rights Reserved

4 Software Interface

4.1 Register Map

Register Address offset Access Description
tx_data 0x00 W Transmit data register
rx_data 0x04 R Receive data register
status 0x08 R/W Status register
control 0x0c R/W Control register
cycles_per_bit 0x10 R/W Cycles per bit register
address 0x14 R/W Slave address
tx_hold_cycles 0x18 R/W Transmit hold cycles register
rx_hold_cycles 0x1c R/W Receive hold cycles register
filter_cycles 0x20 R/W Filter cycles register
txae_thresh 0x24 R/W Transmit FIFO almost empty threshold
rxaf_thresh 0x28 R/W Receive FIFO almost full threshold
tx_count 0x2c R Count of entries used in TX FIFO
rx_count 0x30 R Count of entries used in RX FIFO

Table 4: Register Map

4.1.1 Transmit Data Register

Data to be transmitted over the I2C interface should be written to the transmit data register,

in order to be written to the TX FIFO. The transmit data register should not be written to while

the TXF bit in the status register is set, otherwise data loss may occur.

 7 0

- TX

Figure 2: Format of the tx_data register

4.1.2 Receive Data Register

Data that is received over the I2C interface can be read in the receive data register. A read

from the received data register will remove the data from the RX FIFO, unless pdebug is high.

Setting pdebug high allows a debugger to display the first element in the RX FIFO, without

affecting the program being debugged.

 7 0

- RX

Figure 3: Format of the rx_data register

4.1.3 Status Register

The status register contains a selection of flags that indicate the current status of the I2C. To

clear a bit in the status register, write a 1 to it. Writing 0 will leave it unchanged.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXAF TXAE BB IFB TXU SP ST NACK AL RXU RXO RXF RXE TXO TXF TXE

Figure 4: Format of the status register

 eSi-I2C

Version 7.0.0 7 of 17 © 2019 eSi-RISC, All Rights Reserved

Register Values Description
TXE 0 - Not empty

1 - Empty

Transmit FIFO empty

TXF 0 - Not full

1 - Full

Transmit FIFO full

TXO 0 - No overflow

1 - Overflow

Transmit FIFO overflow

RXE 0 - Not empty

1 - Empty

Receive FIFO empty

RXF 0 - Not full

1 - Full

Receive FIFO full

RXO 0 - No overflow

1 - Overflow

Receive FIFO overflow

RXU 0 – No underflow

1 – Underflow

Receive FIFO underflow

AL 0 – Arbitration not lost

1 – Arbitration lost

Arbitration lost (when master)

NACK 0 – ACK

1 – NACK

Transaction not acknowledged

ST 0 – No start

1 – Start

Start condition observed (when slave)

SP 0 – No stop

1 – Stop

Stop condition observed (when slave)

TXU 0 – No underflow

1 – Underflow

Transmit FIFO underflow

IFB 0 – Idle

1 – Busy

Indicates whether the I2C interface is busy

processing a transaction or idle
BB 0 – Idle

1 – Busy

Indicates whether the I2C bus is busy in use by

another master
TXAE 0 – Not almost empty

1 – Almost empty

Transmit FIFO almost empty

RXAF 0 – Not almost full

1 – Almost full

Receive FIFO almost full

Table 5: Fields of the status register

4.1.4 Control Register

The control register contains a selection of flags that control the operation of the I2C.

 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- GC DC RFSM CS SPIE STIE NIE ALIE RXIE TXIE NACK MS RF E

Figure 5: Format of the control register

Register Values Description
E 0 - Disabled

1 - Enabled

Enables the I2C. When disabled, data will

not be received or transmitted. The I2C

should only be disabled when status.IFB

is 0
RF 0 – Do not reset

1 – Reset FIFOs

Reset FIFOs. When written with a 1,

transmit or receive FIFOs will be cleared.

This bit clears automatically
MS 0 – Master

1 – Slave

Controls whether the interface operates as

a master or slave. Slave mode is only

supported if SLAVE_ENABLED is TRUE.

 eSi-I2C

Version 7.0.0 8 of 17 © 2019 eSi-RISC, All Rights Reserved

NACK 0 – ACK

1 – NACK

When operating as a slave-receiver, this

flag controls whether a received byte is

ACKed or NACKed
TXIE 0 - Disabled

1 - Enabled

Transmit interrupt enable

RXIE 0 - Disabled

1 - Enabled

Receive interrupt enable

ALIE 0 - Disabled

1 – Enabled

Arbitration lost interrupt enable

NIE 0 - Disabled

1 – Enabled

NACK interrupt enable

STIE 0 – Disabled

1 – Enabled

Start interrupt enable

SPIE 0 – Disabled

1 – Enabled

Stop interrupt enable

CS 0 – Disabled

1 – Enabled

When operating as a slave, the clock will be

stretched if the TX FIFO is empty during a

read or the RX FIFO is full during a write
RFSM 0 – Do not reset

1 – Reset FSM

Reset FSM (Finite state machine). When

written with a 1, the FSM will be reset. This

bit clears automatically
DC 0 – 33%/66%

1 – 50%/50%

Approximate SCL duty cycle

GC 0 – ACK general call

1 – NACK general call

Determines whether the interface will ACK

transactions to the general call address (0)

Table 6: Fields of the control register

4.1.5 Cycles per Bit Register

The cycles per bit register is a 16-bit integer that specifies how many cycles of the clock, clk,

the I2C clock, SCL, is held high or low for when operating as a master. Use of a 16-bit register

provides support for a wide range of clock frequencies and bit rates. When operating as a

slave, the bit rate is determined by the master.

When control.DC=0, SCL is held high for (cycles_per_bit+filter_cycles+2) and low for

2*(cycles_per_bit+1).

When control.DC=1, SCL is held high for 2*(cycles_per_bit+1)+filter_cycles+1 and low

for 2*(cycles_per_bit+1).

15 0

CYCLES_PER_BIT

Figure 6: Format of the cycles_per_bit register

4.1.6 Slave Address Register

The slave address register contains the address the I2C interface will respond to (in addition to

the general call address 0) when operating as a slave. If the address register is set to 0, then

it will respond to any address.

 14 0

- ADDRESS

Figure 7: Format of the address register

 eSi-I2C

Version 7.0.0 9 of 17 © 2019 eSi-RISC, All Rights Reserved

7-bit addresses should be stored right aligned, with bits 14 to 7 set to 0. 10-bit addresses

should also be stored right aligned, with the five most significant bits set to b11110.

4.1.7 Transmit Hold Cycles Register

The transmit hold cycles register can be used to set a minimum hold time for the SDA output

enable following a falling edge on SCL. Although the hold time requirement is 0µs in the I2C

specification (tHD;DAT), other standards such as SMBus require a 300ns hold time. Additionally,

some I2C devices that do not correctly implement an internal hold time for the SDA signal

may benefit from a hold time being applied. The value held in the register specifies the

number of clk cycles to hold the SDA output enable, sda_out_enable, following a falling edge

on scl_in.

 8 0

- TX_HOLD_CYCLES

Figure 8: Format of the tx_hold_cycles register

4.1.8 Receive Hold Cycles Register

The receive hold cycles register can be used apply an internal hold time for the SDA input

when used for detection of the START conditions. This can prevent erroneous detection of a

START condition during the SCL fall time. For example, if SCL and SDA are released

simultaneously, but capacitive loading on SCL results in a longer fall time for SCL than SDA,

SDA may reach logic 0 while SCL is still at logic 1, which could be erroneously be interpreted

as a START condition. The value held in the register specifies the number of clk cycles SDA is

held before being evaluated by the I2C state-machine.

 8 0

- RX_HOLD_CYCLES

Figure 9: Format of the rx_hold_cycles register

4.1.9 Filter Cycles Register

The filter cycles register can be used to digitally filter glitches / spikes on the SCL and SDA

inputs. The value in the register specifies the number of clk cycles a transition on the inputs

must have been held for, before it is recognised by the internal logic.

 8 0

- FILTER_CYCLES

Figure 10: Format of the filter_cycles register

4.1.10 Transmit FIFO Almost Empty Threshold Register

The transmit FIFO almost empty threshold register sets the count of used entries in the

transmit FIFO, below which, the status.TXAE flag and tx_ready will be set.

15 log2(tx_fifo_depth) 0

AEIE - TH

Figure 11: Format of the txae_thresh register

 eSi-I2C

Version 7.0.0 10 of 17 © 2019 eSi-RISC, All Rights Reserved

Register Values Description
TH 0 – tx_fifo_depth

Almost empty threshold

AEIE 0 – Interrupt disabled

1 – Interrupt enabled

Almost empty interrupt enable

Table 7: Fields of the txae_thresh register

4.1.11 Receive FIFO Almost Full Threshold Register

The receive FIFO almost full threshold register sets the count of used entries in the receive

FIFO, above which, the status.RXAF flag and rx_ready will be set.

15 log2(rx_fifo_depth) 0

AFIE - TH

Figure 12: Format of the rxaf_thresh register

Register Values Description
TH 0 – rx_fifo_depth

Almost full threshold

AFIE 0 – Interrupt disabled

1 – Interrupt enabled

Almost full interrupt enable

Table 8: Fields of the rxaf_thresh register

4.1.12 Transmit FIFO Count Register

The transmit FIFO count register indicates the count of used entries in the transmit FIFO.

 log2(tx_fifo_depth) 0

 COUNT

Figure 13: Format of the tx_count register

4.1.13 Receive FIFO Count Register

The receive FIFO count register indicates the count of used entries in the receive FIFO.

 log2(rx_fifo_depth) 0

 COUNT

Figure 14: Format of the rx_count register

4.2 Master Transactions

4.2.1 Write Transactions

To initiate a write transaction on the I2C bus when operating as a master, two bytes of control

data need to be written to the transmit data register before the data to be transmitted, as

illustrated in Figure 15: Transmit Data for Write Transactions with 7-bit Addresses and Figure

16: Transmit Data for Write Transactions with 10-bit Addresses.

 eSi-I2C

Version 7.0.0 11 of 17 © 2019 eSi-RISC, All Rights Reserved

Figure 15: Transmit Data for Write Transactions with 7-bit Addresses

Figure 16: Transmit Data for Write Transactions with 10-bit Addresses

The first byte is a control byte and indicates whether or not start and stop conditions are

transmitted before or after the data and whether the address field is included.

• If the ST bit is set, a start condition is transmitted before the data.

• If the SP bit is set, a stop condition is transmitted after the data, providing a NACK is

not received.

• If the NA bit is clear, the address field is present. If the NA bit is set, the address field

is not present.

• If the SPN bit is set, a stop condition will be transmitted immediately following a

NACKed byte, regardless of the ST bit.

• Other bits in this byte must be zero.

The second control byte specifies the length of the data to be transmitted, in bytes. This

includes any address bytes, but does not include the two control bytes.

Following these control bytes are the address and data that will actually be transmitted on the

I2C bus.

Write transactions where the data length is greater than 254 bytes (or 253 bytes when a 10-

bit address is used) must be split into multiple transactions. In the first transaction, only the

ST bit should be set and the SP bit should be clear, to generate a start condition, but no stop

condition. In the last transaction, the SP bit should be set and the ST bit clear, which will not

generate a start condition, but will generate a stop condition. If more than 509 bytes are to be

written, intermediate transactions should have both the ST bit and SP clear, so that neither

start nor stop conditions are generated. Only transactions that have the ST bit set should

include the address field. The remaining transactions should have the NA bit set to indicate

that the address field is not included.

Byte

1 0 0 0 SPN NA 0 SP ST

2 Length

3 Address 0

4 Data 1

… …

Length + 2 Data Length - 1

Byte

1 0 0 0 SPN NA 0 SP ST

2 Length

3 1 1 1 1 0 Addr[9:8] 0

4 Address[7:0]

5 Data 1

… …

Length + 2 Data Length - 2

 eSi-I2C

Version 7.0.0 12 of 17 © 2019 eSi-RISC, All Rights Reserved

Figure 17: Transmit Data for Write Transactions with 510 bytes of data

If the SPN control bit is set, the master will generate a stop condition immediately following a

NACKed byte, including when the SP bit is clear. If the SPN bit is clear, no stop condition will

be generated following a NACKed byte, even if the SP bit is set. This allows the master to

retain control of the bus and generate a repeated start condition via a new transaction with

the ST bit set. It is also possible for the master to generate a stop condition manually via a

new transaction with the SP bit set and the Length set to 0, as illustrated in Figure 18:

Transmit Data to Generate a Stop Condition.

Figure 18: Transmit Data to Generate a Stop Condition

4.2.2 Read Transactions

To initiate a read transaction addressing a slave with a 7-bit address, two bytes of control data

followed by the address need to be written to the transmit data register, as illustrated in

Figure 19: Transmit Data for Read Transactions with 7-bit Addresses.

Figure 19: Transmit Data for Read Transactions with 7-bit Addresses

The first byte is a control byte and indicates whether or not start and stop conditions are

transmitted before or after the data.

• If the ST bit is set, a start condition is transmitted before the data.

• If the SP bit is set, a stop condition is transmitted after the data has been received.

Byte

1 0 0 0 SPN 0 0 0 1

2 255

3 Address 0

4 Data 1

… …

257 Data 254

258 0 0 0 SPN 1 0 0 0

259 255

260 Data 255

… …

514 Data 509

515 0 0 0 SPN 1 0 1 0

516 1

517 Data 510

Byte

1 0 0 0 0 0 0 1 0

2 0

Byte

1 0 0 0 0 NA A SP ST

2 Length

3 Address 1

 eSi-I2C

Version 7.0.0 13 of 17 © 2019 eSi-RISC, All Rights Reserved

• The A bit controls whether an ACK is generated for the last byte (as specified by the

value in the Length byte). Typically this bit should be set to zero, to indicate that the

last byte received should be NACKed, indicating the end of the transaction to the

slave.

• If the NA bit is clear, the address field is present. If the NA bit is set, the address field

is not present. Other bits in this byte should be zero.

The second control byte specifies the total length of the data in the transaction, including the

address byte to be transmitted and the data bytes to be received.

After the control bytes, the address byte must be written to the transmit data register. This

will then be transmitted on the I2C bus. Data received from the slave can then be read from

the receive data register.

To initiate a read transaction addressing a slave with a 10-bit address, two transactions must

effectively take place. First, a write transaction transmits the full 10-bit address. This write

transaction is not terminated by a stop condition. Instead, a repeated start condition is

generated for the second transaction, which is the actual read transaction. Only the two most-

significant bits of the 10-bit slave address are transmitted. The format of the data that must

be written to the transmit data register is illustrated in Figure 20: Transmit Data for Read

Transactions with 10-bit Addresses.

Figure 20: Transmit Data for Read Transactions with 10-bit Addresses

Read transactions where the data length is greater than 254 bytes must be split into multiple

transactions. In the first transaction, the ST bit should be set and the SP bit should be clear, to

generate a start condition, but no stop condition. In the last transaction, the SP bit should be

set and the ST bit clear, which will not generate a start condition, but will generate a stop

condition. If more than 509 bytes are to be read, intermediate transactions should have both

the ST bit and SP bit clear, so that neither start nor stop conditions are generated. Only the

last transaction should have the A bit set, to indicate that all but the very last byte should be

ACKed. Only transactions that have the ST bit set should include the address field. The

remaining transactions should have the NA bit set to indicate that the address field is not

included.

Figure 21: Transmit Data for Read Transactions with 510 bytes of data

Byte

1 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 1 0

3 1 1 1 1 0 Addr[9:8] 0

4 Address[7:0]

5 0 0 0 0 0 A SP 1

6 Length

7 1 1 1 1 0 Addr[9:8] 1

Byte

1 0 0 0 0 0 1 0 1

2 255

3 Address 1

258 0 0 0 0 1 1 0 0

259 255

514 0 0 0 0 1 0 1 0

515 1

 eSi-I2C

Version 7.0.0 14 of 17 © 2019 eSi-RISC, All Rights Reserved

4.2.3 NACKs and Lost Arbitration

If a NACK is received from a slave, the current transaction will be terminated and the NACK

flag in the status register will be set to 1.

If arbitration is lost during a transaction, the transaction will be terminated and the AL flag in

the status register will be set to 1.

In both cases, before starting a new transaction, the transmit and receive FIFOs should be

cleared by setting the RF flag in the control register. Following this, the corresponding flags

in the status register should be cleared by writing the value 1 to them.

4.2.4 Bus Clear

If a master is reset midway through a read transaction, there is the potential for bus lockup to

occur if the slave was driving SDA low. This is because the slave is waiting for SCL to toggle in

order to release SDA, but the master will not do this while SDA is held low. To overcome this,

the bus clear transaction, as illustrated in Figure 22: Transmit Data for Bus Clear, can be used

to generate 9 clocks on the bus regardless of the state of SDA. The SP bit determines whether

this will be followed by a stop condition. Before starting the bus clear transaction, the

status.BB flag may need to be cleared.

Figure 22: Transmit Data for Bus Clear

4.3 Slave Transactions

4.3.1 Write Transactions

When operating as a slave device, if a write transaction on the I2C bus is addressed to this

device, as determined by the address register, the read/write bit and address bytes are first

written to the receive FIFO, followed by the transmitted data as illustrated in Figure 23:

Received Data for Write Transactions with 7-bit Addresses and Figure 24: Received Data for

Write Transactions with 10-bit Addresses.

Figure 23: Received Data for Write Transactions with 7-bit Addresses

Byte

1 0 0 1 0 0 0 SP 0

2 0 0 0 0 0 0 0 1

3 1 1 1 1 1 1 1 1

Byte

1 Address 0

2 Data 1

… …

N + 1 Data N

 eSi-I2C

Version 7.0.0 15 of 17 © 2019 eSi-RISC, All Rights Reserved

Figure 24: Received Data for Write Transactions with 10-bit Addresses

4.3.2 Read Transactions

When operating as a slave device, if a read transaction on the I2C bus is addressed to this

device, as determined by the address register, the read/write bit and address bytes are first

written to the receive FIFO, as illustrated in Figure 25: Received Data for Read Transactions

with 7-bit Addresses and Figure 26: Received Data for Read Transactions with 10-bit

Addresses.

Figure 25: Received Data for Read Transactions with 7-bit Addresses

Figure 26: Received Data for Read Transactions with 10-bit Addresses

Data to be returned to the master should simply be written to the transmit FIFO as illustrated

in Figure 27: Transmit Data for Read Transactions.

Figure 27: Transmit Data for Read Transactions

4.3.3 ACKs and NACKs

If when a data byte is received the receive FIFO is full and clock stretching is disabled, a NACK

will be generated and the receive overflow flag will be set. For address bytes, if there is space

in the receive FIFO or clock stretching is enabled, an ACK will be generated. For received data

bytes from write transactions, an ACK will only be generated if the control.NACK flag is clear

and there is space in the receive FIFO or clock stretching is enabled. For read transactions, the

ACK is generated by the master, rather than the slave. If the master signals a NACK, the

status.NACK flag will be set.

Byte

1 1 1 1 1 0 Addr[9:8] 0

2 Address[7:0]

3 Data 1

… …

N + 2 Data N

Byte

1 Address 1

Byte

1 1 1 1 1 0 Addr[9:8] 0

2 Address[7:0]

3 1 1 1 1 0 Addr[9:8] 1

Byte

1 Data 1

… …

N Data N

 eSi-I2C

Version 7.0.0 16 of 17 © 2019 eSi-RISC, All Rights Reserved

4.3.4 Clock Stretching

Clock stretching is enabled when the control.CS flag is set. When operating as a slave-

receiver, SCL will be held low after an ACK until the received data has been written in to the

receive FIFO. When operating as a slave-transmitter, SCL will be held low until data is

available in the transmit FIFO, ready for transmission.

Clock stretching is not used for read transactions once status.NACK flag is set, as the

master will signal a NACK to indicate the end of the read transaction and the slave must not

stretch the clock after this, as this could prevent the master from generating the stop

condition.

4.4 Interrupts

The I2C supports the following interrupts:

• Transmit interrupt

• Transmit FIFO almost empty interrupt

• Receive interrupt

• Receive FIFO almost full interrupt

• Arbitration lost interrupt

• NACK interrupt

• Start interrupt

• Stop interrupt

The transmit interrupt will be raised when the transmit FIFO is empty and the TXIE flag in the

control register is set to 1. This indicates that the transmitter has no data to transmit. The

transmit FIFO is read after the ACK/NACK has been received for the byte that was transmitted,

so that if the transmit interrupt is raised, the NACK flag is valid for the byte that was

transmitted.

The transmit FIFO almost empty interrupt will be raised when the transmit FIFO is almost

empty as determined by tx_thresh.TH and the AEIE flag in the tx_thresh register is set to 1.

The receive interrupt will be raised when the receiver FIFO is not empty and the RXIE flag in

the control register is set to 1. This indicates that the receiver has received some data.

The receive FIFO almost full interrupt will be raised when the receive FIFO is almost full as

determined by rx_thresh.TH and the AFIE flag in the rx_thresh register is set to 1.

The arbitration lost interrupt will be raised when the AL flag in the status register and the

ALIE flag in the control register are both set to 1. This indicates that arbitration was lost to

another master and the transaction aborted.

The NACK interrupt will be raised when the NACK flag in the status register and the NIE flag in

the control register are both set to 1. This indicates that a NACK was received from an I2C

slave.

The start interrupt will be raised when the ST flag in the status register and the STIE flag in

the control register are both set to 1. This indicates that a repeated start condition was

observed on the I2C bus while operating as a slave.

The stop interrupt will be raised when the SP flag in the status register and the SPIE flag in

the control register are both set to 1. This indicates that a stop condition was observed on

the bus I2C while operating as a slave.

 eSi-I2C

Version 7.0.0 17 of 17 © 2019 eSi-RISC, All Rights Reserved

5 Revision History

Hardware

Revision

Software

Release

Description

1 1.0.0 Initial release
2 2.4.0 Added I2C slave support.

Added status.ST and status.SP register fields.

Added control.MS, control.NACK and control.CS register

fields.

Added control.STIE and control.SPIE register fields.

Added address register.

Added tx_fifo_depth and rx_fifo_depth parameters.

Added start and stop interrupts.

Added arbitration lost and NACK interrupts.

Added tx_ack and rx_ack ports.

Added support for 10-bit addressing.

Added A flag.

Increased length from 7-bits to 8-bits.
3 2.8.4 Added status.IFB register field.

Added status.BB register field.

Added tx_hold_cycles and rx_hold_cycles registers.
4 2.8.6 Added support for NA and SPN flags in control byte.

Added control.RFSM register field.

Added support for 0 length transactions.
5 2.9.1 Updated structure of slave address register to support

distinguishing 7-bit and 10-bit addresses.
6 2.9.5 Added filter_cycles register.
7 3.2.12 Added status.TXAE field.

Added status.RXAF field.

Added txae_thresh register.

Added rxaf_thresh register.
8 3.3.7 rx_hold_cycles only used for START detection.
9 3.3.9 Added tx_count register.

Added rx_count register.
10 5.0.6 Added control.DC field.
11 6.0.2 Added pdebug input.
12 6.0.3 tx_ready is driven by TX FIFO almost empty, rather than not

full.

rx_ready is driven by RX FIFO almost full, rather than not

empty.
13 6.0.3 Added control.GC field.

Added bus clear transaction.

Table 9: Revision History

	eSi-I2C
	1 Contents
	2 Overview
	3 Hardware Interface
	4 Software Interface
	4.1 Register Map
	4.1.1 Transmit Data Register
	4.1.2 Receive Data Register
	4.1.3 Status Register
	4.1.4 Control Register
	4.1.5 Cycles per Bit Register
	4.1.6 Slave Address Register
	4.1.7 Transmit Hold Cycles Register
	4.1.8 Receive Hold Cycles Register
	4.1.9 Filter Cycles Register
	4.1.10 Transmit FIFO Almost Empty Threshold Register
	4.1.11 Receive FIFO Almost Full Threshold Register
	4.1.12 Transmit FIFO Count Register
	4.1.13 Receive FIFO Count Register

	4.2 Master Transactions
	4.2.1 Write Transactions
	4.2.2 Read Transactions
	4.2.3 NACKs and Lost Arbitration
	4.2.4 Bus Clear

	4.3 Slave Transactions
	4.3.1 Write Transactions
	4.3.2 Read Transactions
	4.3.3 ACKs and NACKs
	4.3.4 Clock Stretching

	4.4 Interrupts

	5 Revision History

