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Application Note 

Accelerating CRCs on eSi-RISC with user-defined instructions 

Introduction 
This application note provides some practical examples of calculating a cyclic redundancy check  
(CRC) [1] on 16 and 32-bit versions of eSi-RISC, and looks at how the user-defined instruction 
extensions can provide a saving in power, computation cycles and reclaiming memory space. 

 
The CRC is a common algorithm performed on microprocessors, but can be surprisingly compute 
intensive despite its apparent simplicity.  Even on architectures well suited to bit manipulation and 
having extensive addressing modes such as eSi-RISC, there is still a high minimum cycle count.  In this 
paper we examine computing a 16-bit CRC in its non-reflected form and a 32-bit CRC in its reflected 
form to cover the two typical versions encountered in practice.  The reader is referred to [1] for a 
tutorial on the difference between reflected and non-reflected computation, but in simple terms it 
refers to whether a CRC operates on bits from LSB to MSB or vice-versa.   
 
8-bit CRCs are still commonly used, for example in broadband ISDN [2] and robust compression for 
RTP, UDP and ESP IP headers [3], but in the majority of cases 16 and 32-bit CRCs are required to 
protect longer data payloads, and for this very reason they can end up consuming significant 
processor cycles.  The chosen 16-bit CRC is commonly found protecting MAC frames, and the 32-bit 
CRC is the standard 4 octet IEEE 802.3 frame check sequence (FCS) used to protect an Ethernet MAC 
frame [4]. 
 
The eSi-RISC toolchain is based on the GNU suite and benefits from seamless integration within the 
Eclipse Integrated Development Environment (IDE).  For clarity the algorithms are implemented in 
“C” using efficient loops and compiled for a Release build with –O2 optimization which gives a good 
balance between code size and execution speed.  The program memory is arranged to fetch 32-bit 
instructions in a single cycle.  The eSi-RISC compiler is very efficient at producing optimised code, 
often as good as hand crafted assembly language. 

CRC-16 
16-bit CRCs were common in older data link standards to protect frames of data sent through a 
serial port, and also for interfacing to floppy disk formats.   These applications are still prevalent 
today in low complexity embedded applications but are starting to be replaced by IP encapsulation 
for more complex systems.   
 
More recent common uses for 16-bit CRCs are in MAC layer error control for moderate length 
payloads.  In particular DECT [5] and TETRA [6] both specify these at the MAC layer and are typical 
applications for embedded processors.  Other low data rate wireless networking standards such as 
Bluetooth [7] and Zigbee [8] use a 16-bit checksum for the MAC payload frame check sum (FCS).  
Broadcast standards like Digital Radio Mondiale [9] have applied this checksum to their multiplex 
channels for error protection.  Wired communication standards like USB 2.0 apply a 16-bit checksum 
over the data field prior to transmission. 
 
We begin by looking at a variant of the CRC-16 CCITT algorithm, but the same principles apply to the 
many different implementations. 
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Although the CRC is often specified acting on individual bits of a data stream, in practice the 
algorithm is applied to an array of bytes.  Where the number of bits is not a multiple of 8 then a few 
extra iterations at the end, operating on the excess bits, is still the most efficient method in 
software.  This means that the algorithm can be accelerated by operating on 8-bits at a time.  To 
achieve this requires building a table specifying the effect the polynomial would have on each of the 
256 possible input bit combinations.  The following code generates a table for the CRC-16 in 
unreflected form. 
 

 
Figure 1: Code for generating the unreflected CRC-16 look-up table 

The resulting table is detailed in Appendix A for those interested readers.  This table would typically 
be generated during an initialization phase of the microprocessor execution, in which case it 
occupies 512 bytes of available SRAM in the data space.  Alternatively the table can be pre-
generated and declared as const so it resides in the ROM space (FLASH memory for a standard FPGA 
development board).  On a typical 16-bit processor this represents about 1% of the available data 
and program memory space. 
 
The CRC iteration subroutine is given below.  Note we have used unsigned int for efficient machine 
dependent variable size (16 and 32 bits respectively for a 16-bit and 32-bit processor architecture) 
and C99 [11] specific sizes where the word length is explicit.  The crc16Table is a global const array in 
this example.  The correct behaviour of a CRC is defined by its operation on the string “123456789”.  
In this example the CRC result is 0x29B1 as expected. 

uint16_t crc16Table[256]; 

 

// example unreflected form 

void genCrc16Table(unsigned int numBits, uint16_t poly, uint16_t *table) 

{ 

 uint16_t msb, symbol; 

 unsigned int i, j, tableSize; 

 

 tableSize = 1 << numBits; 

 msb = 1 << 15; 

 

 for(i = 0; i < tableSize; i++) 

 { 

  symbol = i << (16 - numBits); 

  for(j = 0; j < numBits; j++) 

  { 

   if(symbol & msb) 

    symbol = (symbol << 1) ^ poly; 

   else 

    symbol = symbol << 1; 

  } 

  table[i] = symbol; 

 } 

} 

 

void main() 

{ 

 genCrc16Table(8, 0x1021, crc16Table); // CRC16-CCITT 

... 

} 
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Figure 2: Subroutine for calculating CRC-16 using the unreflected table method 

On a 32-bit processor like the eSi-3200 the generated assembly code is as follows 
 

 
Figure 3: Assembly language listing for eSi-3200 implementation of CRC-16 

Using the eSi-RISC profile capability we can generate the CRC for a message of 1024 bytes.  This 
takes 16389 cycles, corresponding to 16 cycles per byte plus a one-time overhead of 7 cycles.  The 
main iteration loop is highlighted in red above.  Clearly the one line of C code hides many 
operations;  
 

 two shifts 

 a logical “and” 

 two logical “exclusive or” 

 a memory content fetch 

 a  pointer increment 

 a table look-up 
 
It is now instructive to see if this loop can be accelerated by a user-defined instruction.  On eSi-RISC 
user-defined instructions are implemented in small hardware accelerators attached to the main 
processor and able to access the register file for up to 2 input arguments and 1 output argument.  
For simple logical operations like a CRC these correspond to very efficient hardware taking only a 
few gates and able to offload look-up tables that would otherwise occupy valuable RAM into logic.  

0000014c <crc16>: 

     14c: 3d68       mv r10, r8 

     14e: e1ff 147f  l r8, 65535 

     152: 2496       bz r9, 17e <crc16+0x32> 

     154: e000 1e92  l r13, (gp+[48 <_interrupt10_vector>]) 

     158: e00b 3448  sru r11, r8, 8 

     15c: 8e0a       lbu  r12, (r10+[0]) 

     15e: e201 c5ff  and r11, 0xff 

     162: e20b 3dcc  xor r11, r11, r12 

     166: 35a1       sl r11, r11, 1 

     168: e00b 3e9b  add r11, r13, r11 

     16c: 958b       lh   r11, (r11+[0]) 

     16e: 3428       sl r8, r8, 8 

     170: e208 3dc8  xor r8, r11, r8 

     174: c4ff       add r9, -1 

     176: e3ff c47f  and r8, 0xffff 

     17a: c501       add r10, 1 

     17c: 2cee       bnz r9, 158 <crc16+0xc> 

     17e: 3882       ret 

uint16_t crc16(uint8_t *message, unsigned int N) 

{ 

 uint16_t crc; 

 

 crc = 0xffff; 

 while(N--) 

 { 

  crc = crc16Table[((crc >> 8)^*message++) & 0xFF]^(crc << 8); 

 } 

 return crc; 

} 
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The user-defined instructions have a “C” subroutine call prototype for simple integration into the 
code.  The actual assembly language instruction is inlined after the arguments are resolved to avoid 
the overhead of an actual function call.  For example the next listing shows how one might 
implement the CRC calling a user-defined instruction within the while loop. 
 

   
Figure 4: Subroutine for generating CRC-16 with user-defined instruction user0 

The generated assembly code is given below, and the user-defined instruction is clearly visible. 
 

 
Figure 5:  Assembly language listing for eSi-3200 implementation of CRC-16 with user-defined instruction 

This code executes in 8196 cycles corresponding to 8 clock cycles per byte.  Most of the clock cycles 
here are related to updating the pointer address and handling the while loop control variable.  
Implementing the CRC in user logic corresponds to a 2x speed-up which can be a significant saving 
for some applications. 
 
Next we turn our attention to how the same code maps to a 16-bit processor like the eSi-1600.  The 
generated assembly code for the same C routine of Figure 2 is given below 
 

0000014c <crc16>: 

     14c: 3d68       mv r10, r8 

     14e: e1ff 147f  l r8, 65535 

     152: 2489       bz r9, 164 <crc16+0x18> 

     154: c4ff       add r9, -1 

     156: 8d8a       lbu  r11, (r10+[0]) 

     158: c501       add r10, 1 

     15a: e0e8 3c0b  user0 r8, r8, r11 

     15e: e3ff c47f  and r8, 0xffff 

     162: 2cf9       bnz r9, 154 <crc16+0x8> 

     164: 3882       ret 

uint16_t crc16(uint8_t *message, unsigned int N) 

{ 

 uint16_t crc; 

 

 crc = 0xffff; 

 while(N--) 

 { 

  crc = user0(crc, *message++); 

 } 

 return crc; 

} 
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Figure 6: Assembly language listing for eSi-1600 implementation of CRC-16 

This code executes in 13317 cycles corresponding to 13 clock cycles per byte.  The reason for the 
improved cycle count on a 16-bit machine is simply that the 32-bit machine has to mask off the 
lower 16-bits of the CRC, whereas a natural 16-bit machine doesn’t need to.   
 
The corresponding assembly listing with the user-defined instruction implemented is shown below 
 

 
Figure 7: Assembly language listing for eSi-1600 implementation of CRC-16 with user-defined instruction 

This optimised code runs in 7172 cycles corresponding to 7 clock cycles per byte, and benefits from 
the same cycle saving from avoiding a mask operation.  We conclude that there’s no loss in efficiency 
from running a 16-bit CRC on a 16 or 32-bit machine.  User-defined instructions can give a 2x 
improvement in both architectures.  

CRC-32 
Next we look at performing the IEEE 802.3 MAC FCS [4] in both architectures.  This checksum uses a 
reflected version of the table to simplify the main iteration loop.  The table is efficiently generated as 
follows, and listed in Appendix A for the interested reader. 
 

000000a2 <crc16>: 

      a2: 157f       l r10, -1 

      a4: 2487       bz r9, b2 <crc16+0x10> 

      a6: c4ff       add r9, -1 

      a8: 8d88       lbu  r11, (r8+[0]) 

      aa: c401       add r8, 1 

      ac: e0ea 3d0b  user0 r10, r10, r11 

      b0: 2cfb       bnz r9, a6 <crc16+0x4> 

      b2: 3c6a       mv r8, r10 

      b4: 3882       ret 

000000a2 <crc16>: 

      a2: 3d68       mv r10, r8 

      a4: e092 1694  l r13, 18708 

      a8: 147f       l r8, -1 

      aa: 2490       bz r9, ca <crc16+0x28> 

      ac: 8d8a       lbu  r11, (r10+[0]) 

      ae: e00c 3448  sru r12, r8, 8 

      b2: e20b 3e4b  xor r11, r12, r11 

      b6: 35a1       sl r11, r11, 1 

      b8: e00b 3e9b  add r11, r13, r11 

      bc: 958b       lh   r11, (r11+[0]) 

      be: 3428       sl r8, r8, 8 

      c0: c4ff       add r9, -1 

      c2: e208 3dc8  xor r8, r11, r8 

      c6: c501       add r10, 1 

      c8: 2cf2       bnz r9, ac <crc16+0xa> 

      ca: 3882       ret 
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Figure 8: Subroutine to generate reflected CRC-32 look-up table 

This table occupies 1K bytes, which is quite a significant waste of RAM available to the 
microprocessor just to allow efficient CRC calculation. 
 
 The reflected CRC calculation is actually slightly simpler than the non-reflected case, since it avoids 
one of the shift operations.  Correct operation is verified by operating on the message string 
“123456789” to give the expected result 0xCBF43926.  The listing is given below for the most 
efficient implementation. 
 

 
Figure 9: Subroutine for calculating CRC-32 using the reflected table method 

The eSi-3200 assembly language listing corresponding to this is given below 
 

// reflected form - use reflected table too !! 

uint32_t crc32(uint8_t *message, unsigned int N) 

{ 

 uint32_t crc; 

 

 crc = 0xffffffff; 

 while(N--) 

 { 

  crc = crc32Table[(crc ^ *message++) & 0xFF] ^ (crc >> 8); 

 } 

 return ~crc; 

} 

uint32_t crc32Table[256]; 

 

// example reflected form - poly should be reflected too 

void genCrc32Table(unsigned int numBits, uint32_t poly, uint32_t *table) 

{ 

 uint32_t symbol; 

 unsigned int i, j, tableSize; 

 

 tableSize = 1 << numBits; 

 

 for(i = 0; i < tableSize; i++) 

 { 

  symbol = i; 

  for(j = 0; j < numBits; j++ ) 

  { 

   if(symbol & 1) 

    symbol = (symbol >> 1) ^ poly; 

   else 

    symbol = symbol >> 1; 

  } 

  table[i] = symbol; 

 } 

} 

 

void main() 

{ 

 genCrc32Table(8, 0xEDB88320, crc32Table); // CRC32-IEEE802.3 

 ... 

} 
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Figure 10: Assembly language listing for eSi-3200 implementation of CRC-32 

This executed in 14343 cycles, corresponding to 14 cycles per byte.  This is slightly more efficient 
than the 16-bit non-reflected CRC.   
 
We now implement the main CRC calculation as a user-defined instruction in the same manner as 
the 16-bit CRC.  For this example the 32-bit CRC is performed in user instruction #1. 
 

 
Figure 11: Subroutine for generating CRC-32 with user-defined instruction user1 

The corresponding assembly language code generated by the compiler is given below 
 

 
Figure 12: Assembly language listing for eSi-3200 implementation of CRC-32 with user-defined instructions 

00000166 <crc32>: 

     166: 157f       l r10, -1 

     168: 1580       l r11, 0 

     16a: 2489       bz r9, 17c <crc32+0x16> 

     16c: c4ff       add r9, -1 

     16e: 8d88       lbu  r11, (r8+[0]) 

     170: c401       add r8, 1 

     172: e0ea 3d0b  user1 r10, r10, r11 

     176: 2cfb       bnz r9, 16c <crc32+0x6> 

     178: e041 3d8a  not r11, r10 

     17c: 3c6b       mv r8, r11 

     17e: 3882       ret 

uint32_t crc32(uint8_t *message, unsigned int N) 

{ 

 uint32_t crc; 

 

 crc = 0xffffffff; 

 while(N--) 

 { 

  crc = user1(crc, *message++); 

 } 

 return ~crc; 

} 

00000180 <crc32>: 

     180: 157f       l r10, -1 

     182: e000 1e86  l r13, (gp+[18 <_debug_vector>]) 

     186: 1580       l r11, 0 

     188: 2493       bz r9, 1ae <crc32+0x2e> 

     18a: 8e08       lbu  r12, (r8+[0]) 

     18c: e00b 3548  sru r11, r10, 8 

     190: e20a 3d4c  xor r10, r10, r12 

     194: e201 c57f  and r10, 0xff 

     198: 3522       sl r10, r10, 2 

     19a: e00a 3e9a  add r10, r13, r10 

     19e: a50a       lw   r10, (r10+[0]) 

     1a0: c4ff       add r9, -1 

     1a2: e20a 3d4b  xor r10, r10, r11 

     1a6: c401       add r8, 1 

     1a8: 2cf1       bnz r9, 18a <crc32+0xa> 

     1aa: e041 3d8a  not r11, r10 

     1ae: 3c6b       mv r8, r11 

     1b0: 3882       ret 
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This now executes in 7175 cycles equivalent to 7 cycles per byte.  The speed-up that can be achieved 
is 2x and the 1K byte look-up table can be implemented efficiently in ROM within the user-defined 
function logic. 
 
Finally we consider how a 16-bit processor executes a 32-bit CRC.  Clearly there is now an 
architectural miss-match because the registers in this microprocessor are only 16-bits wide and the 
calculations are on 32-bit variables.  Nevertheless it is a basic requirement for a 16-bit machine to 
handle wider data widths efficiently. 
 

 
Figure 13: Assembly language listing of eSi-1600 implementation of CRC-32 

This code runs in 18443 cycles, corresponding to 18 cycles per byte, or 0.78x the speed achieved by 
the 32-bit processor. 
 
If we now want to implement the CRC in user-defined logic we come across a problem.  The user-
defined instructions operate on registers having the native architecture bit-width, in this case 16-
bits, but the CRC is 32-bits wide.  Clearly we can no longer pass the crc variable to the user-defined 
instruction.  This is an example where the previous algorithm can’t be implemented in user logic 
without restructuring the meaning of the instruction, but fortunately eSi-RISC supports this.  In this 
case we simply use two user-defined control and status registers (CSR) to hold the 32-bit CRC and 
the user instruction just passes one message byte.  The user66 instruction that only takes a single 
argument and returns void is applicable to this example.  This technique is described in the code 
listing below but further details are beyond the discussion in this application note. 
 

000000cc <crc32>: 

      cc: 3d69       mv r10, r9 

      ce: 1600       l r12, 0 

      d0: 1480       l r9, 0 

      d2: 2521       bz r10, 114 <crc32+0x48> 

      d4: 167f       l r12, -1 

      d6: 14ff       l r9, -1 

      d8: e096 1788  l r15, 19208 

      dc: 8e88       lbu  r13, (r8+[0]) 

      de: e00b 3648  sru r11, r12, 8 

      e2: e20c 3e4d  xor r12, r12, r13 

      e6: e201 c67f  and r12, 0xff 

      ea: 3622       sl r12, r12, 2 

      ec: e00c 3f9c  add r12, r15, r12 

      f0: 969c       lh   r13, (r12+[1]) 

      f2: e00e 34a8  sl r14, r9, 8 

      f6: 960c       lh   r12, (r12+[0]) 

      f8: e00b 3f4b  or r11, r14, r11 

      fc: 34c8       sru r9, r9, 8 

      fe: c57f       add r10, -1 

     100: e20c 3e4b  xor r12, r12, r11 

     104: e209 3ec9  xor r9, r13, r9 

     108: c401       add r8, 1 

     10a: 2d69       bnz r10, dc <crc32+0x10> 

     10c: e041 3e0c  not r12, r12 

     110: e041 3c89  not r9, r9 

     114: 3c6c       mv r8, r12 

     116: 3882       ret 



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.1 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 9 of 17 

 
Figure 14: Using user-defined control and status registers to allow 32-bit CRC calculation on eSi-1600. 

Further efficiencies discussion using CRC-16 example 
The eSi-RISC processor has some optional instructions and addressing modes that can have a 
positive impact on reducing processor clock cycles or improving code density.  One of these is a 
hardware loop instruction.  In the earlier sections it was noted that the overhead in a user-defined 
instruction implemented in a loop is predominately related to the loop management.  Enabling the 
hardware loop instruction by passing “–mloop-enabled” to the toolchain slightly changes the 
compiled output as follows 
 

 
Figure 15: Assembly language listing of eSi-1600 implementation of CRC-16 with user-defined instruction and hardware 
loop 

Now the loop executes in 5 cycles per byte instead of the previous 7.  It is also possible to fold the 
address increment into the load instruction by passing “–mupdate-addr-enabled” to the toolchain.  
This causes the processor to be configured with a second write port to the register file so that two 
results can be written each clock cycle (e.g for store instructions that load a value and store the 
updated address).  Combining this with a small amount of loop unrolling can give further savings.  
The compiler can be instructed to do this automatically for statically defined loop iterations by 
passing –funroll-loops to the compiler, or it can be manually applied.  Consider re-writing the code to 
unroll 4 iterations of the loop and taking care of remaining bytes as follows. 
 

000000a2 <crc16>: 

      a2: 157f       l r10, -1 

      a4: 2488       bz r9, b4 <crc16+0x12> 

      a6: c4ff       add r9, -1 

      a8: 8d88       lbu  r11, (r8+[0]) 

      aa: c401       add r8, 1 

      ac: e0ea 3d0b  user0 r10, r10, r11 

      b0: efff 04fc  loop r9, a8 <crc16+0x6> 

      b4: 3c6a       mv r8, r10 

      b6: 3882       ret 

uint32_t crc32(uint8_t *message, unsigned int N) 

{ 

 uint32_t crc; 

 

 user_wcsr(0, 0, 0xffff); 

 user_wcsr(0, 1, 0xffff); 

 while(N--) 

 { 

  user66(*message++); 

 } 

 crc = (user_rcsr(0, 1) << 16) | user_rcsr(0, 0); 

 return crc; 

} 
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Figure 16: When the loop management overhead is significant, some loop unrolling can provide benefits 

Now the loop overhead is reduced and the relevant part of the assembly related to the while loop is 
listed below.  This re-write benefits from 15 cycles per 4 bytes, equivalent to 3.75 cycles per byte. 
 

 
Figure 17: Assembly listing for eSi-1600 with loop unrolling by 4 

The ultimate speed-up for eSi-1600 can be achieved by taking advantage of further architectural 
features of eSi-RISC, notably user-defined control and status registers (CSRs) available in 16 banks of 
32 registers each.  These are designed to enhance the capability of user-defined instructions further.  
For instance the CRC can be stored in one of these registers, and a user-defined instruction can now 
be used to pass two 16-bit operands, since it doesn’t have to pass the crc variable each time, and we 
are assuming that the hardware is redefined to operate on 32-bits at a time.  Some house keeping is 
required to handle the final byte boundaries, but this further optimization together with a loop 
unroll of 2 can process 8 bytes in 8 cycles, equivalent to 1 cycle per byte. 
 
This section should have provided you with an insight into the power granted by judicous use of 
user-defined instructions, and the trade-offs available should be weighed against the speed-up 
required for your application. 

Implementing user-defined instructions in the Simulator and Hardware 
In order to employ user-defined instructions when executing an application on the instruction set 
simulator, a shared library must be loaded in to the simulator which implements the instructions. 

     ... 

     122: 8e9a       lbu  r13, (r10+[1]) 

     124: 8e0a       lbu  r12, (r10+[0]) 

     126: e0ec 3c0c  user0 r12, r8, r12 

     12a: e0ec 3e0d  user0 r12, r12, r13 

     12e: 8eaa       lbu  r13, (r10+[2]) 

     130: e0ec 3e0d  user0 r12, r12, r13 

     134: 8eba       lbu  r13, (r10+[3]) 

     136: c504       add r10, 4 

     138: e0e8 3e0d  user0 r8, r12, r13 

     13c: efff 05f3  loop r11, 122 <crc16+0x12> 

     ... 

uint16_t crc16(uint8_t *message, unsigned int N) 

{ 

 uint16_t crc; 

 

 crc = 0xffff; 

 while(N >= 4) 

 { 

  crc = user0(crc, *message++); 

  crc = user0(crc, *message++); 

  crc = user0(crc, *message++); 

  crc = user0(crc, *message++); 

  N -= 4; 

 } 

 while(N--) 

 { 

  crc = user0(crc, *message++); 

 } 

 return crc; 

} 
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This library can implement any functionality for the instruction it chooses, perhaps even by 
connecting to real hardware.  
 
It is first necessary to build the shared library that implements the instructions. This library must be 
built using the host’s toolchain (i.e. Cygwin GCC), which is not part of the eSi-RISC development tools 
installation. It can be installed using the Cygwin installer.  The following template shows how a 
userX() call is mapped to the resolving function “user_insn()” in the shared library. 
 

 
Figure 18: Shared library implementation of the CRC-16 and CRC-32 user-defined instructions 

The hardware implementation of a user-defined instruction is written in a standard HDL language 
like Verilog or VHDL and connected to the eSi-RISC processor “User Interface”.   Appendix B provides 
a listing of the file crc.v implementing the hardware CRC instructions through a parameterised 
interface.  This implementation uses 8 repeated shifts and conditional xor rather than a table based 
approach and leads to highly efficient and compact logic.  Also in that appendix is the esi_user.v 
listing that interfaces the hardware implementation of user0 and user1 to the eSi-RISC processor. 

Conclusion 
The CRC is a ubiquitous algorithm finding application in a number of established standards, mostly 
around MAC layer error protection.  The eSi-RISC architecture is well suited to performing this 
function efficiently using its standard instruction set.  To achieve higher performance the eSi-RISC 
user-defined instructions were explored as a simple expansive mechanism for offloading 
computation and large 1K byte look-up tables.  The application code is documented in this paper for 
reference, together with the actual generated assembly.  The results are summarised below 
 

#include <stdint.h> 

#include "crc16Table.h" 

#include "crc32Table.h" 

 

/* Execute a user-defined instruction. Which operands are valid will 

depend upon the opcode. */ 

unsigned user_insn(void *config, unsigned opcode, unsigned operand_a, 

unsigned operand_b, unsigned *unsupported, unsigned *cycles) 

{ 

 switch (opcode) 

 { 

 case 0: 

  *cycles = 1; 

  *unsupported = 0; 

  return crc16Table[((operand_a >> 8) ^ operand_b) & 0xFF] ^ 

(operand_a << 8); 

 case 1: 

  *cycles = 1; 

  *unsupported = 0; 

  return crc32Table[(operand_a ^ operand_b) & 0xFF] ^ 

(operand_a >> 8); 

 default: 

  *unsupported = 1; 

  return 0; 

 } 

} 
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Figure 19: Cycle counts per byte 

A potential speed up between 2x and 4x are available from simple application of user-defined 
instructions acting on a byte at a time, some architectural features and loop-unrolling.  In addition 
we showed how the CRC-16 can be accelerated to 1 and 0.5 cycles/byte on eSi-1600 and eSi-3200 
respectively, equivalent to a speed-up of 32x to 40x, by operating on multiple bytes in each user-
defined instruction.  The clear message is that executing a subroutine in fewer cycles leads to a 
lower power consumption, or the ability to trade those cycles for performance in another part of the 
system.  Moving data tables from RAM into ROM or logic also saves power and frees up valuable 
memory resource for the processor. 

About EnSilica 
EnSilica is an established company with many years experience providing high quality IC design 
services to customers undertaking FPGA and ASIC designs.  We have an impressive record of success 
working across many market segments  with particular expertise in multimedia and communication 
applications.  Our customers range from start-ups to blue-chip companies.  EnSilica can provide the 
full range of front-end IC design services, from System Level Design, RTL coding and Verification 
through to either a FPGA device or the physical design interface (synthesis, STA and DFT) for ASIC 
designs.  EnSilica also offer a portfolio of IP, including a highly configurable 16/32 bit embedded 
processor called eSi-RISC and the eSi-Comms range of communications IP. 
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Appendix A 
 

 
Figure 20: Listing of generated unreflected CRC-16 table 

 
Figure 21: Listing of generated reflected CRC-32 table 

  

const uint32_t crc32Table[256] = { 

    0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3, 

    0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 

    0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 

    0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5, 

    0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 

    0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 

    0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f, 

    0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 

    0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 

    0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01, 

    0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 

    0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 

    0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 

    0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 

    0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 

    0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 

    0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 

    0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 

    0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7, 

    0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 

    0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 

    0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79, 

    0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 

    0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 

    0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713, 

    0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 

    0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 

    0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 

    0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 

    0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 

    0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf, 

    0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d}; 

 

const uint16_t crc16Table[256] = { 

    0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, 

    0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, 

    0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, 

    0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, 

    0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, 

    0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, 

    0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, 

    0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, 

    0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, 

    0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, 

    0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, 

    0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, 

    0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, 

    0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, 

    0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, 

    0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, 

    0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, 

    0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, 

    0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, 

    0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, 

    0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, 

    0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 

    0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, 

    0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, 

    0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, 

    0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, 

    0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, 

    0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, 

    0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, 

    0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, 

    0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, 

    0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0}; 
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Appendix B 
 

 
Figure 22: Listing of crc.v Verilog module 

 

module crc #(parameter CRC_WIDTH=5'd16, POLY=16'h0121, REFLECT=1'b0) 

( 

    input [CRC_WIDTH-1:0] crc_in, 

    input [7:0] message, 

    output [CRC_WIDTH-1:0] crc_out, 

    output waitrequest 

); 

    //-------------------------------------------------------------------------- 

    // iteration function for a single bit 

    //-------------------------------------------------------------------------- 

 

    function [CRC_WIDTH-1:0] rem(input [CRC_WIDTH-1:0] a, input b); 

        reg carry; 

        begin 

            rem = REFLECT ? a >> 1 : a << 1; 

            carry = REFLECT ? a[0] : a[CRC_WIDTH-1]; 

            if(carry ^ b) 

                rem = rem ^ POLY; 

        end 

    endfunction 

     

    //-------------------------------------------------------------------------- 

    // reflect a byte 

    //-------------------------------------------------------------------------- 

 

    function [7:0] refl(input [7:0] a); 

        integer i; 

        begin 

            for(i=0;i<8;i=i+1) 

                refl[i] = a[7-i]; 

        end 

    endfunction 

 

    //-------------------------------------------------------------------------- 

    // connectivity 

    //-------------------------------------------------------------------------- 

 

    wire [CRC_WIDTH-1:0] r[0:7]; 

    wire [7:0] m; 

     

    //-------------------------------------------------------------------------- 

    // iterate over a byte 

    //-------------------------------------------------------------------------- 

     

    assign m = REFLECT ? refl(message) : message;     

    assign r[0] = rem(crc_in, m[7]); 

    assign r[1] = rem(r[0], m[6]); 

    assign r[2] = rem(r[1], m[5]); 

    assign r[3] = rem(r[2], m[4]); 

    assign r[4] = rem(r[3], m[3]); 

    assign r[5] = rem(r[4], m[2]); 

    assign r[6] = rem(r[5], m[1]); 

    assign r[7] = rem(r[6], m[0]); 

     

    assign crc_out = r[7]; 

    assign waitrequest = 1'b0; // not used - crc module is single cycle 

     

endmodule 
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`include “esi_user_include.v” 

 

module esi_user 

( 

    input clk, 

    input reset_n, 

     

    // user instruction interface 

    input [`CPU_USER_OPCODE_RNG] user_opcode, 

    input [`CPU_WORD_RNG] user_operand_a, 

    input [`CPU_WORD_RNG] user_operand_b, 

    output reg [`CPU_WORD_RNG] user_result, 

    output user_condition_met, 

    output reg user_stall, 

    output user_opcode_unsupported, 

 

    // user csr interface 

    input [`CPU_CSR_RNG] user_csr_bank, 

    input [`CPU_CSR_RNG] user_csr_csr, 

    input user_csr_write, 

    input user_csr_read, 

    input [`CPU_WORD_RNG] user_csr_write_data,     

    output [`CPU_WORD_RNG] user_csr_read_data, 

    output [`CPU_WORD_RNG] user_csr_unsupported 

); 

 

    //-------------------------------------------------------------------------- 

    // connectivity 

    //-------------------------------------------------------------------------- 

 

    wire [15:0] crc16_out; 

    wire [31:0] crc32_out; 

    wire [1:0] waitrequest; 

     

    //-------------------------------------------------------------------------- 

    // output mux 

    //-------------------------------------------------------------------------- 

 

    always@(*) 

    begin: RESULT_MUX 

        case(user_opcode) // synthesis parallel_case 

            0: user_result = crc16_out; 

            1: user_result = crc32_out; 

            default: user_result = `CPU_WORD_WIDTH'd0; 

        endcase 

    end 

     

    always@(*) 

    begin: STALL_MUX 

        case(user_opcode) // synthesis parallel_case 

            0: user_stall = waitrequest[0]; 

            1: user_stall = waitrequest[1]; 

            default: user_stall = `FALSE; 

        endcase 

    end 

     

    assign user_opcode_unsupported = user_opcode > `CPU_USER_OPCODE_WIDTH'd1; 

    assign user_condition_met = `FALSE; 

    assign user_csr_read_data = `CPU_WORD_WIDTH'd0; 

    assign user_csr_unsupported = `TRUE; 
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Figure 23: Listing of esi_user.v Verilog interface to the CPU. 

     

    //-------------------------------------------------------------------------- 

    // user0 

    //-------------------------------------------------------------------------- 

     

    crc #( 

        .CRC_WIDTH(5'd16),  

        .POLY(16'h1021),  

        .REFLECT(1'b0) 

    ) u_user0 ( 

        .crc_in(user_operand_a[15:0]), 

        .message(user_operand_b[7:0]), 

        .crc_out(crc16_out), 

        .waitrequest(waitrequest[0]) 

    ); 

     

    //-------------------------------------------------------------------------- 

    // user1 only valid for CPU_WORD_WIDTH > 16 

    //-------------------------------------------------------------------------- 

     

    crc #( 

        .CRC_WIDTH(6'd32),  

        .POLY(32'hEDB88320),    // reflected polynomial 

        .REFLECT(1'b1) 

    ) u_user1 ( 

        .crc_in(user_operand_a[31:0]), 

        .message(user_operand_b[7:0]), 

        .crc_out(crc32_out), 

        .waitrequest(waitrequest[1]) 

    ); 

 

endmodule 


