

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 1 of 17

Application Note

Accelerating CRCs on eSi-RISC with user-defined instructions

Introduction
This application note provides some practical examples of calculating a cyclic redundancy check
(CRC) [1] on 16 and 32-bit versions of eSi-RISC, and looks at how the user-defined instruction
extensions can provide a saving in power, computation cycles and reclaiming memory space.

The CRC is a common algorithm performed on microprocessors, but can be surprisingly compute
intensive despite its apparent simplicity. Even on architectures well suited to bit manipulation and
having extensive addressing modes such as eSi-RISC, there is still a high minimum cycle count. In this
paper we examine computing a 16-bit CRC in its non-reflected form and a 32-bit CRC in its reflected
form to cover the two typical versions encountered in practice. The reader is referred to [1] for a
tutorial on the difference between reflected and non-reflected computation, but in simple terms it
refers to whether a CRC operates on bits from LSB to MSB or vice-versa.

8-bit CRCs are still commonly used, for example in broadband ISDN [2] and robust compression for
RTP, UDP and ESP IP headers [3], but in the majority of cases 16 and 32-bit CRCs are required to
protect longer data payloads, and for this very reason they can end up consuming significant
processor cycles. The chosen 16-bit CRC is commonly found protecting MAC frames, and the 32-bit
CRC is the standard 4 octet IEEE 802.3 frame check sequence (FCS) used to protect an Ethernet MAC
frame [4].

The eSi-RISC toolchain is based on the GNU suite and benefits from seamless integration within the
Eclipse Integrated Development Environment (IDE). For clarity the algorithms are implemented in
“C” using efficient loops and compiled for a Release build with –O2 optimization which gives a good
balance between code size and execution speed. The program memory is arranged to fetch 32-bit
instructions in a single cycle. The eSi-RISC compiler is very efficient at producing optimised code,
often as good as hand crafted assembly language.

CRC-16
16-bit CRCs were common in older data link standards to protect frames of data sent through a
serial port, and also for interfacing to floppy disk formats. These applications are still prevalent
today in low complexity embedded applications but are starting to be replaced by IP encapsulation
for more complex systems.

More recent common uses for 16-bit CRCs are in MAC layer error control for moderate length
payloads. In particular DECT [5] and TETRA [6] both specify these at the MAC layer and are typical
applications for embedded processors. Other low data rate wireless networking standards such as
Bluetooth [7] and Zigbee [8] use a 16-bit checksum for the MAC payload frame check sum (FCS).
Broadcast standards like Digital Radio Mondiale [9] have applied this checksum to their multiplex
channels for error protection. Wired communication standards like USB 2.0 apply a 16-bit checksum
over the data field prior to transmission.

We begin by looking at a variant of the CRC-16 CCITT algorithm, but the same principles apply to the
many different implementations.

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 2 of 17

Although the CRC is often specified acting on individual bits of a data stream, in practice the
algorithm is applied to an array of bytes. Where the number of bits is not a multiple of 8 then a few
extra iterations at the end, operating on the excess bits, is still the most efficient method in
software. This means that the algorithm can be accelerated by operating on 8-bits at a time. To
achieve this requires building a table specifying the effect the polynomial would have on each of the
256 possible input bit combinations. The following code generates a table for the CRC-16 in
unreflected form.

Figure 1: Code for generating the unreflected CRC-16 look-up table

The resulting table is detailed in Appendix A for those interested readers. This table would typically
be generated during an initialization phase of the microprocessor execution, in which case it
occupies 512 bytes of available SRAM in the data space. Alternatively the table can be pre-
generated and declared as const so it resides in the ROM space (FLASH memory for a standard FPGA
development board). On a typical 16-bit processor this represents about 1% of the available data
and program memory space.

The CRC iteration subroutine is given below. Note we have used unsigned int for efficient machine
dependent variable size (16 and 32 bits respectively for a 16-bit and 32-bit processor architecture)
and C99 [11] specific sizes where the word length is explicit. The crc16Table is a global const array in
this example. The correct behaviour of a CRC is defined by its operation on the string “123456789”.
In this example the CRC result is 0x29B1 as expected.

uint16_t crc16Table[256];

// example unreflected form

void genCrc16Table(unsigned int numBits, uint16_t poly, uint16_t *table)

{

 uint16_t msb, symbol;

 unsigned int i, j, tableSize;

 tableSize = 1 << numBits;

 msb = 1 << 15;

 for(i = 0; i < tableSize; i++)

 {

 symbol = i << (16 - numBits);

 for(j = 0; j < numBits; j++)

 {

 if(symbol & msb)

 symbol = (symbol << 1) ^ poly;

 else

 symbol = symbol << 1;

 }

 table[i] = symbol;

 }

}

void main()

{

 genCrc16Table(8, 0x1021, crc16Table); // CRC16-CCITT

...

}

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 3 of 17

Figure 2: Subroutine for calculating CRC-16 using the unreflected table method

On a 32-bit processor like the eSi-3200 the generated assembly code is as follows

Figure 3: Assembly language listing for eSi-3200 implementation of CRC-16

Using the eSi-RISC profile capability we can generate the CRC for a message of 1024 bytes. This
takes 16389 cycles, corresponding to 16 cycles per byte plus a one-time overhead of 7 cycles. The
main iteration loop is highlighted in red above. Clearly the one line of C code hides many
operations;

 two shifts

 a logical “and”

 two logical “exclusive or”

 a memory content fetch

 a pointer increment

 a table look-up

It is now instructive to see if this loop can be accelerated by a user-defined instruction. On eSi-RISC
user-defined instructions are implemented in small hardware accelerators attached to the main
processor and able to access the register file for up to 2 input arguments and 1 output argument.
For simple logical operations like a CRC these correspond to very efficient hardware taking only a
few gates and able to offload look-up tables that would otherwise occupy valuable RAM into logic.

0000014c <crc16>:

 14c: 3d68 mv r10, r8

 14e: e1ff 147f l r8, 65535

 152: 2496 bz r9, 17e <crc16+0x32>

 154: e000 1e92 l r13, (gp+[48 <_interrupt10_vector>])

 158: e00b 3448 sru r11, r8, 8

 15c: 8e0a lbu r12, (r10+[0])

 15e: e201 c5ff and r11, 0xff

 162: e20b 3dcc xor r11, r11, r12

 166: 35a1 sl r11, r11, 1

 168: e00b 3e9b add r11, r13, r11

 16c: 958b lh r11, (r11+[0])

 16e: 3428 sl r8, r8, 8

 170: e208 3dc8 xor r8, r11, r8

 174: c4ff add r9, -1

 176: e3ff c47f and r8, 0xffff

 17a: c501 add r10, 1

 17c: 2cee bnz r9, 158 <crc16+0xc>

 17e: 3882 ret

uint16_t crc16(uint8_t *message, unsigned int N)

{

 uint16_t crc;

 crc = 0xffff;

 while(N--)

 {

 crc = crc16Table[((crc >> 8)^*message++) & 0xFF]^(crc << 8);

 }

 return crc;

}

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 4 of 17

The user-defined instructions have a “C” subroutine call prototype for simple integration into the
code. The actual assembly language instruction is inlined after the arguments are resolved to avoid
the overhead of an actual function call. For example the next listing shows how one might
implement the CRC calling a user-defined instruction within the while loop.

Figure 4: Subroutine for generating CRC-16 with user-defined instruction user0

The generated assembly code is given below, and the user-defined instruction is clearly visible.

Figure 5: Assembly language listing for eSi-3200 implementation of CRC-16 with user-defined instruction

This code executes in 8196 cycles corresponding to 8 clock cycles per byte. Most of the clock cycles
here are related to updating the pointer address and handling the while loop control variable.
Implementing the CRC in user logic corresponds to a 2x speed-up which can be a significant saving
for some applications.

Next we turn our attention to how the same code maps to a 16-bit processor like the eSi-1600. The
generated assembly code for the same C routine of Figure 2 is given below

0000014c <crc16>:

 14c: 3d68 mv r10, r8

 14e: e1ff 147f l r8, 65535

 152: 2489 bz r9, 164 <crc16+0x18>

 154: c4ff add r9, -1

 156: 8d8a lbu r11, (r10+[0])

 158: c501 add r10, 1

 15a: e0e8 3c0b user0 r8, r8, r11

 15e: e3ff c47f and r8, 0xffff

 162: 2cf9 bnz r9, 154 <crc16+0x8>

 164: 3882 ret

uint16_t crc16(uint8_t *message, unsigned int N)

{

 uint16_t crc;

 crc = 0xffff;

 while(N--)

 {

 crc = user0(crc, *message++);

 }

 return crc;

}

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 5 of 17

Figure 6: Assembly language listing for eSi-1600 implementation of CRC-16

This code executes in 13317 cycles corresponding to 13 clock cycles per byte. The reason for the
improved cycle count on a 16-bit machine is simply that the 32-bit machine has to mask off the
lower 16-bits of the CRC, whereas a natural 16-bit machine doesn’t need to.

The corresponding assembly listing with the user-defined instruction implemented is shown below

Figure 7: Assembly language listing for eSi-1600 implementation of CRC-16 with user-defined instruction

This optimised code runs in 7172 cycles corresponding to 7 clock cycles per byte, and benefits from
the same cycle saving from avoiding a mask operation. We conclude that there’s no loss in efficiency
from running a 16-bit CRC on a 16 or 32-bit machine. User-defined instructions can give a 2x
improvement in both architectures.

CRC-32
Next we look at performing the IEEE 802.3 MAC FCS [4] in both architectures. This checksum uses a
reflected version of the table to simplify the main iteration loop. The table is efficiently generated as
follows, and listed in Appendix A for the interested reader.

000000a2 <crc16>:

 a2: 157f l r10, -1

 a4: 2487 bz r9, b2 <crc16+0x10>

 a6: c4ff add r9, -1

 a8: 8d88 lbu r11, (r8+[0])

 aa: c401 add r8, 1

 ac: e0ea 3d0b user0 r10, r10, r11

 b0: 2cfb bnz r9, a6 <crc16+0x4>

 b2: 3c6a mv r8, r10

 b4: 3882 ret

000000a2 <crc16>:

 a2: 3d68 mv r10, r8

 a4: e092 1694 l r13, 18708

 a8: 147f l r8, -1

 aa: 2490 bz r9, ca <crc16+0x28>

 ac: 8d8a lbu r11, (r10+[0])

 ae: e00c 3448 sru r12, r8, 8

 b2: e20b 3e4b xor r11, r12, r11

 b6: 35a1 sl r11, r11, 1

 b8: e00b 3e9b add r11, r13, r11

 bc: 958b lh r11, (r11+[0])

 be: 3428 sl r8, r8, 8

 c0: c4ff add r9, -1

 c2: e208 3dc8 xor r8, r11, r8

 c6: c501 add r10, 1

 c8: 2cf2 bnz r9, ac <crc16+0xa>

 ca: 3882 ret

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 6 of 17

Figure 8: Subroutine to generate reflected CRC-32 look-up table

This table occupies 1K bytes, which is quite a significant waste of RAM available to the
microprocessor just to allow efficient CRC calculation.

 The reflected CRC calculation is actually slightly simpler than the non-reflected case, since it avoids
one of the shift operations. Correct operation is verified by operating on the message string
“123456789” to give the expected result 0xCBF43926. The listing is given below for the most
efficient implementation.

Figure 9: Subroutine for calculating CRC-32 using the reflected table method

The eSi-3200 assembly language listing corresponding to this is given below

// reflected form - use reflected table too !!

uint32_t crc32(uint8_t *message, unsigned int N)

{

 uint32_t crc;

 crc = 0xffffffff;

 while(N--)

 {

 crc = crc32Table[(crc ^ *message++) & 0xFF] ^ (crc >> 8);

 }

 return ~crc;

}

uint32_t crc32Table[256];

// example reflected form - poly should be reflected too

void genCrc32Table(unsigned int numBits, uint32_t poly, uint32_t *table)

{

 uint32_t symbol;

 unsigned int i, j, tableSize;

 tableSize = 1 << numBits;

 for(i = 0; i < tableSize; i++)

 {

 symbol = i;

 for(j = 0; j < numBits; j++)

 {

 if(symbol & 1)

 symbol = (symbol >> 1) ^ poly;

 else

 symbol = symbol >> 1;

 }

 table[i] = symbol;

 }

}

void main()

{

 genCrc32Table(8, 0xEDB88320, crc32Table); // CRC32-IEEE802.3

 ...

}

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 7 of 17

Figure 10: Assembly language listing for eSi-3200 implementation of CRC-32

This executed in 14343 cycles, corresponding to 14 cycles per byte. This is slightly more efficient
than the 16-bit non-reflected CRC.

We now implement the main CRC calculation as a user-defined instruction in the same manner as
the 16-bit CRC. For this example the 32-bit CRC is performed in user instruction #1.

Figure 11: Subroutine for generating CRC-32 with user-defined instruction user1

The corresponding assembly language code generated by the compiler is given below

Figure 12: Assembly language listing for eSi-3200 implementation of CRC-32 with user-defined instructions

00000166 <crc32>:

 166: 157f l r10, -1

 168: 1580 l r11, 0

 16a: 2489 bz r9, 17c <crc32+0x16>

 16c: c4ff add r9, -1

 16e: 8d88 lbu r11, (r8+[0])

 170: c401 add r8, 1

 172: e0ea 3d0b user1 r10, r10, r11

 176: 2cfb bnz r9, 16c <crc32+0x6>

 178: e041 3d8a not r11, r10

 17c: 3c6b mv r8, r11

 17e: 3882 ret

uint32_t crc32(uint8_t *message, unsigned int N)

{

 uint32_t crc;

 crc = 0xffffffff;

 while(N--)

 {

 crc = user1(crc, *message++);

 }

 return ~crc;

}

00000180 <crc32>:

 180: 157f l r10, -1

 182: e000 1e86 l r13, (gp+[18 <_debug_vector>])

 186: 1580 l r11, 0

 188: 2493 bz r9, 1ae <crc32+0x2e>

 18a: 8e08 lbu r12, (r8+[0])

 18c: e00b 3548 sru r11, r10, 8

 190: e20a 3d4c xor r10, r10, r12

 194: e201 c57f and r10, 0xff

 198: 3522 sl r10, r10, 2

 19a: e00a 3e9a add r10, r13, r10

 19e: a50a lw r10, (r10+[0])

 1a0: c4ff add r9, -1

 1a2: e20a 3d4b xor r10, r10, r11

 1a6: c401 add r8, 1

 1a8: 2cf1 bnz r9, 18a <crc32+0xa>

 1aa: e041 3d8a not r11, r10

 1ae: 3c6b mv r8, r11

 1b0: 3882 ret

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 8 of 17

This now executes in 7175 cycles equivalent to 7 cycles per byte. The speed-up that can be achieved
is 2x and the 1K byte look-up table can be implemented efficiently in ROM within the user-defined
function logic.

Finally we consider how a 16-bit processor executes a 32-bit CRC. Clearly there is now an
architectural miss-match because the registers in this microprocessor are only 16-bits wide and the
calculations are on 32-bit variables. Nevertheless it is a basic requirement for a 16-bit machine to
handle wider data widths efficiently.

Figure 13: Assembly language listing of eSi-1600 implementation of CRC-32

This code runs in 18443 cycles, corresponding to 18 cycles per byte, or 0.78x the speed achieved by
the 32-bit processor.

If we now want to implement the CRC in user-defined logic we come across a problem. The user-
defined instructions operate on registers having the native architecture bit-width, in this case 16-
bits, but the CRC is 32-bits wide. Clearly we can no longer pass the crc variable to the user-defined
instruction. This is an example where the previous algorithm can’t be implemented in user logic
without restructuring the meaning of the instruction, but fortunately eSi-RISC supports this. In this
case we simply use two user-defined control and status registers (CSR) to hold the 32-bit CRC and
the user instruction just passes one message byte. The user66 instruction that only takes a single
argument and returns void is applicable to this example. This technique is described in the code
listing below but further details are beyond the discussion in this application note.

000000cc <crc32>:

 cc: 3d69 mv r10, r9

 ce: 1600 l r12, 0

 d0: 1480 l r9, 0

 d2: 2521 bz r10, 114 <crc32+0x48>

 d4: 167f l r12, -1

 d6: 14ff l r9, -1

 d8: e096 1788 l r15, 19208

 dc: 8e88 lbu r13, (r8+[0])

 de: e00b 3648 sru r11, r12, 8

 e2: e20c 3e4d xor r12, r12, r13

 e6: e201 c67f and r12, 0xff

 ea: 3622 sl r12, r12, 2

 ec: e00c 3f9c add r12, r15, r12

 f0: 969c lh r13, (r12+[1])

 f2: e00e 34a8 sl r14, r9, 8

 f6: 960c lh r12, (r12+[0])

 f8: e00b 3f4b or r11, r14, r11

 fc: 34c8 sru r9, r9, 8

 fe: c57f add r10, -1

 100: e20c 3e4b xor r12, r12, r11

 104: e209 3ec9 xor r9, r13, r9

 108: c401 add r8, 1

 10a: 2d69 bnz r10, dc <crc32+0x10>

 10c: e041 3e0c not r12, r12

 110: e041 3c89 not r9, r9

 114: 3c6c mv r8, r12

 116: 3882 ret

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 9 of 17

Figure 14: Using user-defined control and status registers to allow 32-bit CRC calculation on eSi-1600.

Further efficiencies discussion using CRC-16 example
The eSi-RISC processor has some optional instructions and addressing modes that can have a
positive impact on reducing processor clock cycles or improving code density. One of these is a
hardware loop instruction. In the earlier sections it was noted that the overhead in a user-defined
instruction implemented in a loop is predominately related to the loop management. Enabling the
hardware loop instruction by passing “–mloop-enabled” to the toolchain slightly changes the
compiled output as follows

Figure 15: Assembly language listing of eSi-1600 implementation of CRC-16 with user-defined instruction and hardware
loop

Now the loop executes in 5 cycles per byte instead of the previous 7. It is also possible to fold the
address increment into the load instruction by passing “–mupdate-addr-enabled” to the toolchain.
This causes the processor to be configured with a second write port to the register file so that two
results can be written each clock cycle (e.g for store instructions that load a value and store the
updated address). Combining this with a small amount of loop unrolling can give further savings.
The compiler can be instructed to do this automatically for statically defined loop iterations by
passing –funroll-loops to the compiler, or it can be manually applied. Consider re-writing the code to
unroll 4 iterations of the loop and taking care of remaining bytes as follows.

000000a2 <crc16>:

 a2: 157f l r10, -1

 a4: 2488 bz r9, b4 <crc16+0x12>

 a6: c4ff add r9, -1

 a8: 8d88 lbu r11, (r8+[0])

 aa: c401 add r8, 1

 ac: e0ea 3d0b user0 r10, r10, r11

 b0: efff 04fc loop r9, a8 <crc16+0x6>

 b4: 3c6a mv r8, r10

 b6: 3882 ret

uint32_t crc32(uint8_t *message, unsigned int N)

{

 uint32_t crc;

 user_wcsr(0, 0, 0xffff);

 user_wcsr(0, 1, 0xffff);

 while(N--)

 {

 user66(*message++);

 }

 crc = (user_rcsr(0, 1) << 16) | user_rcsr(0, 0);

 return crc;

}

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 10 of 17

Figure 16: When the loop management overhead is significant, some loop unrolling can provide benefits

Now the loop overhead is reduced and the relevant part of the assembly related to the while loop is
listed below. This re-write benefits from 15 cycles per 4 bytes, equivalent to 3.75 cycles per byte.

Figure 17: Assembly listing for eSi-1600 with loop unrolling by 4

The ultimate speed-up for eSi-1600 can be achieved by taking advantage of further architectural
features of eSi-RISC, notably user-defined control and status registers (CSRs) available in 16 banks of
32 registers each. These are designed to enhance the capability of user-defined instructions further.
For instance the CRC can be stored in one of these registers, and a user-defined instruction can now
be used to pass two 16-bit operands, since it doesn’t have to pass the crc variable each time, and we
are assuming that the hardware is redefined to operate on 32-bits at a time. Some house keeping is
required to handle the final byte boundaries, but this further optimization together with a loop
unroll of 2 can process 8 bytes in 8 cycles, equivalent to 1 cycle per byte.

This section should have provided you with an insight into the power granted by judicous use of
user-defined instructions, and the trade-offs available should be weighed against the speed-up
required for your application.

Implementing user-defined instructions in the Simulator and Hardware
In order to employ user-defined instructions when executing an application on the instruction set
simulator, a shared library must be loaded in to the simulator which implements the instructions.

 ...

 122: 8e9a lbu r13, (r10+[1])

 124: 8e0a lbu r12, (r10+[0])

 126: e0ec 3c0c user0 r12, r8, r12

 12a: e0ec 3e0d user0 r12, r12, r13

 12e: 8eaa lbu r13, (r10+[2])

 130: e0ec 3e0d user0 r12, r12, r13

 134: 8eba lbu r13, (r10+[3])

 136: c504 add r10, 4

 138: e0e8 3e0d user0 r8, r12, r13

 13c: efff 05f3 loop r11, 122 <crc16+0x12>

 ...

uint16_t crc16(uint8_t *message, unsigned int N)

{

 uint16_t crc;

 crc = 0xffff;

 while(N >= 4)

 {

 crc = user0(crc, *message++);

 crc = user0(crc, *message++);

 crc = user0(crc, *message++);

 crc = user0(crc, *message++);

 N -= 4;

 }

 while(N--)

 {

 crc = user0(crc, *message++);

 }

 return crc;

}

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 11 of 17

This library can implement any functionality for the instruction it chooses, perhaps even by
connecting to real hardware.

It is first necessary to build the shared library that implements the instructions. This library must be
built using the host’s toolchain (i.e. Cygwin GCC), which is not part of the eSi-RISC development tools
installation. It can be installed using the Cygwin installer. The following template shows how a
userX() call is mapped to the resolving function “user_insn()” in the shared library.

Figure 18: Shared library implementation of the CRC-16 and CRC-32 user-defined instructions

The hardware implementation of a user-defined instruction is written in a standard HDL language
like Verilog or VHDL and connected to the eSi-RISC processor “User Interface”. Appendix B provides
a listing of the file crc.v implementing the hardware CRC instructions through a parameterised
interface. This implementation uses 8 repeated shifts and conditional xor rather than a table based
approach and leads to highly efficient and compact logic. Also in that appendix is the esi_user.v
listing that interfaces the hardware implementation of user0 and user1 to the eSi-RISC processor.

Conclusion
The CRC is a ubiquitous algorithm finding application in a number of established standards, mostly
around MAC layer error protection. The eSi-RISC architecture is well suited to performing this
function efficiently using its standard instruction set. To achieve higher performance the eSi-RISC
user-defined instructions were explored as a simple expansive mechanism for offloading
computation and large 1K byte look-up tables. The application code is documented in this paper for
reference, together with the actual generated assembly. The results are summarised below

#include <stdint.h>

#include "crc16Table.h"

#include "crc32Table.h"

/* Execute a user-defined instruction. Which operands are valid will

depend upon the opcode. */

unsigned user_insn(void *config, unsigned opcode, unsigned operand_a,

unsigned operand_b, unsigned *unsupported, unsigned *cycles)

{

 switch (opcode)

 {

 case 0:

 *cycles = 1;

 *unsupported = 0;

 return crc16Table[((operand_a >> 8) ^ operand_b) & 0xFF] ^

(operand_a << 8);

 case 1:

 *cycles = 1;

 *unsupported = 0;

 return crc32Table[(operand_a ^ operand_b) & 0xFF] ^

(operand_a >> 8);

 default:

 *unsupported = 1;

 return 0;

 }

}

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 12 of 17

Figure 19: Cycle counts per byte

A potential speed up between 2x and 4x are available from simple application of user-defined
instructions acting on a byte at a time, some architectural features and loop-unrolling. In addition
we showed how the CRC-16 can be accelerated to 1 and 0.5 cycles/byte on eSi-1600 and eSi-3200
respectively, equivalent to a speed-up of 32x to 40x, by operating on multiple bytes in each user-
defined instruction. The clear message is that executing a subroutine in fewer cycles leads to a
lower power consumption, or the ability to trade those cycles for performance in another part of the
system. Moving data tables from RAM into ROM or logic also saves power and frees up valuable
memory resource for the processor.

About EnSilica
EnSilica is an established company with many years experience providing high quality IC design
services to customers undertaking FPGA and ASIC designs. We have an impressive record of success
working across many market segments with particular expertise in multimedia and communication
applications. Our customers range from start-ups to blue-chip companies. EnSilica can provide the
full range of front-end IC design services, from System Level Design, RTL coding and Verification
through to either a FPGA device or the physical design interface (synthesis, STA and DFT) for ASIC
designs. EnSilica also offer a portfolio of IP, including a highly configurable 16/32 bit embedded
processor called eSi-RISC and the eSi-Comms range of communications IP.

References
1. http://www.ross.net/crc/download/crc_v3.txt
2. ITU-T I.432.1 B-ISDN user-network interface – Physical layer specification: General characteristics

02/99
3. RFC3095 RObust Header Compression (ROHC)
4. IEEE 802.3-2005 Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access

method and physical layer specifications.
5. EN 300 175-3 v2.2.1 (2008-11) Digital Enhanced Cordless Telecommunications (DECT); Common

Interface (CI); Part 3: Medium Access Control (MAC) layer
6. EN 300 392-2 v3.2.1 (2007-09) Terrestrial Trunked Radio (TETRA); Voice plus Data (V+D); Part 2:

Air Interface (AI)

0 5 10 15 20

eSi-1600

eSi-3200

cycles/byte

Cycle counts for different configurations

CRC-32 User unrolled

CRC-32 User

CRC-32 Native

CRC-16 User unrolled

CRC-16 User

CRC-16 Native

http://www.ross.net/crc/download/crc_v3.txt

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 13 of 17

7. IEEE Std 802.15.1-2005 Wireless Medium Access control (MAC) and Physical Layer (PHY)
Specifications for Wireless Personal Area Networks (WPANs)

8. IEEE Std 802.15.4-2006 Wireless Medium access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area Networks (WPANs)

9. ES 201 980 v2.2.1 (2005-08) Digital Radio Mondiale (DRM); System Specification
10. Universal Serial Bus Specification Revision 2.0 April 27, 2000.
11. ISO/IEC 9899:201x August 11, 2008 Programming languages - C

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 14 of 17

Appendix A

Figure 20: Listing of generated unreflected CRC-16 table

Figure 21: Listing of generated reflected CRC-32 table

const uint32_t crc32Table[256] = {

 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,

 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,

 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,

 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,

 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,

 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,

 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,

 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,

 0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,

 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,

 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,

 0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,

 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,

 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,

 0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,

 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,

 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,

 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,

 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,

 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,

 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,

 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,

 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,

 0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,

 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,

 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,

 0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,

 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,

 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,

 0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,

 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,

 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d};

const uint16_t crc16Table[256] = {

 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,

 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,

 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,

 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,

 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,

 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,

 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,

 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,

 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,

 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,

 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,

 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,

 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,

 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,

 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,

 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,

 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,

 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,

 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,

 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,

 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,

 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,

 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,

 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,

 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,

 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,

 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,

 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,

 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,

 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,

 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,

 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0};

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 15 of 17

Appendix B

Figure 22: Listing of crc.v Verilog module

module crc #(parameter CRC_WIDTH=5'd16, POLY=16'h0121, REFLECT=1'b0)

(

 input [CRC_WIDTH-1:0] crc_in,

 input [7:0] message,

 output [CRC_WIDTH-1:0] crc_out,

 output waitrequest

);

 //--

 // iteration function for a single bit

 //--

 function [CRC_WIDTH-1:0] rem(input [CRC_WIDTH-1:0] a, input b);

 reg carry;

 begin

 rem = REFLECT ? a >> 1 : a << 1;

 carry = REFLECT ? a[0] : a[CRC_WIDTH-1];

 if(carry ^ b)

 rem = rem ^ POLY;

 end

 endfunction

 //--

 // reflect a byte

 //--

 function [7:0] refl(input [7:0] a);

 integer i;

 begin

 for(i=0;i<8;i=i+1)

 refl[i] = a[7-i];

 end

 endfunction

 //--

 // connectivity

 //--

 wire [CRC_WIDTH-1:0] r[0:7];

 wire [7:0] m;

 //--

 // iterate over a byte

 //--

 assign m = REFLECT ? refl(message) : message;

 assign r[0] = rem(crc_in, m[7]);

 assign r[1] = rem(r[0], m[6]);

 assign r[2] = rem(r[1], m[5]);

 assign r[3] = rem(r[2], m[4]);

 assign r[4] = rem(r[3], m[3]);

 assign r[5] = rem(r[4], m[2]);

 assign r[6] = rem(r[5], m[1]);

 assign r[7] = rem(r[6], m[0]);

 assign crc_out = r[7];

 assign waitrequest = 1'b0; // not used - crc module is single cycle

endmodule

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 16 of 17

`include “esi_user_include.v”

module esi_user

(

 input clk,

 input reset_n,

 // user instruction interface

 input [`CPU_USER_OPCODE_RNG] user_opcode,

 input [`CPU_WORD_RNG] user_operand_a,

 input [`CPU_WORD_RNG] user_operand_b,

 output reg [`CPU_WORD_RNG] user_result,

 output user_condition_met,

 output reg user_stall,

 output user_opcode_unsupported,

 // user csr interface

 input [`CPU_CSR_RNG] user_csr_bank,

 input [`CPU_CSR_RNG] user_csr_csr,

 input user_csr_write,

 input user_csr_read,

 input [`CPU_WORD_RNG] user_csr_write_data,

 output [`CPU_WORD_RNG] user_csr_read_data,

 output [`CPU_WORD_RNG] user_csr_unsupported

);

 //--

 // connectivity

 //--

 wire [15:0] crc16_out;

 wire [31:0] crc32_out;

 wire [1:0] waitrequest;

 //--

 // output mux

 //--

 always@(*)

 begin: RESULT_MUX

 case(user_opcode) // synthesis parallel_case

 0: user_result = crc16_out;

 1: user_result = crc32_out;

 default: user_result = `CPU_WORD_WIDTH'd0;

 endcase

 end

 always@(*)

 begin: STALL_MUX

 case(user_opcode) // synthesis parallel_case

 0: user_stall = waitrequest[0];

 1: user_stall = waitrequest[1];

 default: user_stall = `FALSE;

 endcase

 end

 assign user_opcode_unsupported = user_opcode > `CPU_USER_OPCODE_WIDTH'd1;

 assign user_condition_met = `FALSE;

 assign user_csr_read_data = `CPU_WORD_WIDTH'd0;

 assign user_csr_unsupported = `TRUE;

EnSilica Limited, The Barn, Waterloo Road © 2010 EnSilica Ltd, All Rights Reserved
Wokingham RG40 3BY, United Kingdom Version 1.1
Tel: +44 (0)118 3217 310 11/01/2010
info@ensilica.com 17 of 17

Figure 23: Listing of esi_user.v Verilog interface to the CPU.

 //--

 // user0

 //--

 crc #(

 .CRC_WIDTH(5'd16),

 .POLY(16'h1021),

 .REFLECT(1'b0)

) u_user0 (

 .crc_in(user_operand_a[15:0]),

 .message(user_operand_b[7:0]),

 .crc_out(crc16_out),

 .waitrequest(waitrequest[0])

);

 //--

 // user1 only valid for CPU_WORD_WIDTH > 16

 //--

 crc #(

 .CRC_WIDTH(6'd32),

 .POLY(32'hEDB88320), // reflected polynomial

 .REFLECT(1'b1)

) u_user1 (

 .crc_in(user_operand_a[31:0]),

 .message(user_operand_b[7:0]),

 .crc_out(crc32_out),

 .waitrequest(waitrequest[1])

);

endmodule

