
 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 1 of 13 

White Paper 

A study of AES and its efficient implementation on eSi-RISC 

Introduction 
This White Paper provides some practical examples of calculating the Advanced Encryption Standard 
(AES) on 16 and 32-bit versions of eSi-RISC.  The basic software implementation is refined using 
known techniques in the literature, and a novel implementation of Bertoni’s transposed 
MixColumns() transformation provides the most optimised fully software implementation.  The final 
cycle count on eSi-3250 is shown to be better than ARM7TDMI, ARM9TDMI and LEON-2 embedded 
processor benchmarks and the code density is superior.  Finally the white paper looks at how the 
user-defined instruction extensions can provide additional saving in power, memory and 
computation cycles. 
 
Embedded systems have become ubiquitous in recent years stemming from the exponential growth 
in mobile phones, PDAs, portable multimedia devices and smart cards.  This has lead to a need for 
strong cryptography to protect users identity, transactions and allow secure billing.  This includes 
security in both wireless communications and authentication.  Since embedded systems have limited 
resources then it is essential that the cryptography overhead is as small as possible. 
 
The main drawback with block ciphers like AES [1] is that they are quite costly to implement in 
software, but have simple hardware realizations using logical bit operations and manipulation.  
Offloading these operations from software to hardware using user-defined instructions tightly 
coupled to a processor leads to considerable clock cycle savings.  The AES algorithm is specified in 
many wireless standards as the MAC protocol encryption method [2]...[8], and also in RFID tags [9]. 

AES algorithm description 
The AES algorithm is described in [1] in terms of operations on a 128-bit block of data (16 bytes), 
using keys of length 128, 192 and 256 bits.  The 16 input bytes are first arranged in a 4x4 State 
matrix filled columnwise.  The encoding operation is described by 4 transformations on the State 
matrix; SubBytes(), ShiftRows(), MixColumns() and AddRoundKey().  These functions are called 
sequentially in a number of Rounds between 10 and 14 for the various key lengths.  The final round 
is slightly different from the others in omitting MixColumns().  The code detailed here was adapted 
from [9]. 
 

 

void Cipher(int Nr, int Nk, unsigned char *RoundKey, const unsigned char 

*in, unsigned char *out) 

{ 

 int c, r, round = 0; 

 unsigned char state[4][4]; 

 

 // Copy the input PlainText to state array. 

 for (c = 0; c < 4; c++) 

 { 

  for (r = 0; r < 4; r++) 

  { 

   state[c][r] = in[c * 4 + r]; 

  } 

} 

 



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 2 of 13 

 
Figure 1: Main encryption software routine 

The SubBytes() transformation is a non-linear byte substitution that operates independently on each 
byte of the State using a 256 byte substitution table called an SBOX.  The transformation is described 
by a look-up table operating on each byte and substituting back in-place in the State matrix.  For 
various reasons that will become clear later the state is stored state[col][row]. 
 

 
Figure 2: SubBytes subroutine 

In the ShiftRows() transformation, the bytes in the last three rows of State are cyclically shifted left 
over 1 to 3 bytes respectively.  The first row is left un-shifted. 
 

inline static void SubBytes(unsigned char state[4][4]) 

{ 

 int c, r; 

 

 for(c=0;c<4;c++) 

 { 

  for(r=0;r<4;r++) 

  { 

   state[c][r] = sbox[state[c][r]]; 

  } 

 } 

} 

 // Add the First round key to the state before starting round 1. 

 AddRoundKey(round, RoundKey, state); 

 

 // There will be Nr-1 identical rounds. 

 for (round = 1; round < Nr; round++) 

 { 

  SubBytes(state); 

  ShiftRows(state); 

  MixColumns(state); 

  AddRoundKey(round, RoundKey, state); 

 } 

 

 // The last round excludes MixColumns(). 

 SubBytes(state); 

 ShiftRows(state); 

 AddRoundKey(Nr, RoundKey, state); 

 

 // Copy the state array to output array. 

 for (c = 0; c < 4; c++) 

 { 

  for (r = 0; r < 4; r++) 

  { 

   out[c * 4 + r] = state[c][r]; 

  } 

 } 

} 



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 3 of 13 

 
Figure 3: ShiftRows subroutine 

The MixColumns() transformation operates on State column-by-column, treating each column as a 
four term polynomial.  The polynomials over GF(28) are multiplied modulo x4+1 with a fixed 
polynomial and written back to State in-place.  The polynomial multiplication by {02} is carried out 
with the macro xtime() as described in [1], and multiplication by other polynomials is performed by 
adding intermediate results. 
 

 
Figure 4: MixColumns subroutine 

Finally the AddRoundKey() transformation operates columnwise XOR’ing the column with bytes from 
the Key Schedule, based on the round and column index. 
 

// multiply one byte in GF(2^8) by {02} 

#define BPOLY 0x1b 

#define xtime(x) (((x)<<1) ^ ((((x)>>7) & 1) * BPOLY)) 

 

inline static void MixColumns(unsigned char state[4][4]) 

{ 

 int c; 

 unsigned char temp, t; 

 

 for (c = 0; c < 4; c++) 

 { 

  t = state[c][0]; 

  temp = state[c][0] ^state[c][1] ^ state[c][2] ^ state[c][3]; 

  state[c][0] ^= xtime(state[c][0] ^ state[c][1]) ^ temp; 

  state[c][1] ^= xtime(state[c][1] ^ state[c][2]) ^ temp; 

  state[c][2] ^= xtime(state[c][2] ^ state[c][3]) ^ temp; 

  state[c][3] ^= xtime(state[c][3] ^ t) ^ temp; 

 } 

} 

inline static void ShiftRows(unsigned char state[4][4]) 

{ 

 unsigned char temp; 

 

 // Rotate first row 1 columns to left 

 temp = state[0][1]; 

 state[0][1] = state[1][1]; state[1][1] = state[2][1]; 

 state[2][1] = state[3][1]; state[3][1] = temp; 

 

 // Rotate second row 2 columns to left 

 temp = state[0][2]; 

 state[0][2] = state[2][2]; state[2][2] = temp; 

 

 temp = state[1][2]; 

 state[1][2] = state[3][2]; state[3][2] = temp; 

 

 // Rotate third row 3 columns to left 

 temp = state[0][3]; 

 state[0][3] = state[3][3]; state[3][3] = state[2][3]; 

 state[2][3] = state[1][3]; state[1][3] = temp; 

} 



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 4 of 13 

 
Figure 5: AddRoundKey subroutine 

Now the basic algorithm has been introduced it is necessary to get a feel for how this performs on 
an embedded processor.  
 
The eSi-RISC tool chain is based on the GNU suite and benefits from seamless integration within the 
Eclipse Integrated Development Environment (IDE).  For clarity the algorithms are implemented in 
“C” using efficient loops and compiled for a Release build with –O2 optimization which gives a good 
balance between code size and execution speed.  The eSi-RISC is configured with 32-bit wide 
instruction memory, so that 32-bit instructions can be fetched in a single cycle.  The eSi-RISC 
compiler is very efficient at producing optimised code, often as good as hand crafted assembly 
language.  In addition the instruction set is optimised so that many instructions are encoded in 16-
bits leading to a high code density. 
 
The eSi-RISC family of processors have a configurable instruction set, and the following instructions 
are required for best performance in cryptographic applications. 
 

 barrel shift instruction 

 hardware loop 

 scaled update addressing  
 
In Table 1 we detail the cycle count and program code size of the basic un-optimised 
implementation, denoted aes0, for the 3 eSi-RISC family members.  An additional 256 bytes is 
needed for SBOX table look-up. 
 

 eSi-1600 eSi-3200 eSi-3250 

 cycles p codesize cycles p codesize cycles p codesize 

aes0 4748 624 4818 732 4606 618 
Table 1: Basic un-optimised AES encryption code. 

The eSi-1600 is a 16-bit processor, while eSi-3200 and eSi-3250 are 32-bit, where eSi-3250 has more 
internal registers than eSi-3200.  In the next section we consider how the basic algorithm is 
restructured in C for faster implementation. 

Fast and efficient software enhancement 
For pure software enhancement the methods found in [11], [12] and [13] for Intel StongARM SA-
1110, Ultra SPARC III, PowerPC, AMD Athlon 64, and Pentium are helpful, but are targeted at high 
end CPUs that have large and efficient cache memory architectures.  For implementations on 

inline static void AddRoundKey(int round, unsigned char *RoundKey, 

  unsigned char state[4][4]) 

{ 

 int c, r; 

 

 for (c = 0; c < 4; c++) 

 { 

  for (r = 0; r < 4; r++) 

  { 

   state[c][r] ^= RoundKey[round * 4 * Nb + c * Nb + r]; 

  } 

 } 

} 



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 5 of 13 

embedded processors the references [13], [14] and [15] cover the concepts, while [15] has cycle 
counts for ARM7TDMI, ARM9TDMI and [16] has cycle counts and code size for LEON-2. 
 
The fastest implementations use T-tables [11], [12] and [13] which require 16 look-ups into large 
tables to aggregate the all the steps except for AddRoundKey().  These tables are 4kB, and separate 
tables are required for the last round and for encryption and decryption.  This leads to 16kB of 
memory to achieve the lowest cycle counts.  T-table methods compute an AES-128 in 160 to 480 
cycles, depending on the processor instruction set, equivalent to 10 to 30 cycles per byte.  On 
processors with a cache this performance can only be realised with a cache size of 8kB or more, and 
has an impact on other software tasks, whereby the cache is emptied for AES and needs refilling for 
other tasks to continue efficiently.  Apart from excessive memory usage, security is compromised by 
the threat of cache-based side-channel attacks [17].  Since memory accesses are normally the most 
energy-intensive instructions then cache hungry algorithms should be avoided.  As eSi-RISC is a 
customised processor it can be configured without a cache and all the memory internal.  This gives 
rise to a simple ROM table approach where the processor is being used mainly as an encryption co-
processor in a larger SoC, and the full efficiency of T-tables can be realised.   
 
For a typical embedded processor application where encryption is only one of the tasks being 
performed, then it becomes necessary to minimise the code-size.  The SBOX table is only 256 bytes 
and is the only table necessary for encryption and decryption.  In the subsequent analysis we 
optimise the code to only use this table and include specific enhancements for a 32-bit processor 
(although the code will still execute on a 16-bit processor without modification). 
 
There are 3 nested for-loops; assigning the plain-text to the State, AddRoundKey() and assigning the 
State to the output array that can be performed 4-bytes at a time.  By defining a pointer that can 
index State as four 32-bit words then the new code achieves some reduction in memory accesses.  
The RoundKey must also be indexed in the same way.  The new code fragments are shown below. 
 

 
Figure 6: AddRoundKey subroutine optimised for accessing State by 32-bit columns 

inline static void AddRoundKey(int round, unsigned char *RoundKey, 

unsigned long *state32) 

{ 

 unsigned long *key32 = (unsigned long *) &RoundKey[4*round*Nb]; 

 

 // Update state with results 

 state32[0] = state32[0] ^ key32[0]; 

 state32[1] = state32[1] ^ key32[1]; 

 state32[2] = state32[2] ^ key32[2]; 

 state32[3] = state32[3] ^ key32[3]; 

} 



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 6 of 13 

 
Figure 7: Encryption subroutine optimised for accessing State by 32-bit columns 

This modification we call aes1 and the resulting speed-up is considerable  
 

 eSi-1600 eSi-3200 eSi-3250 

 cycles p codesize cycles p codesize cycles p codesize 

aes0 4748 624 4818 732 4606 618 

aes1 3391 776 3143 692 2918 682 
Table 2: Cycle count comparison after 32-bit column access optimization. 

A profile of the code shows that more than 50% of the cycle count is taken up by MixColumns().  In 
[13] Gladman introduces a 4-byte at a time enhancement to MixColumns that requires the 
embedded processor to have a barrel-shift instruction.   This code performs 4 GF(28) multiplications 
in a 32-bit column and accumulates with the other columns after rotation. 
 

 
Figure 8: MixColumns optimization to perform 4 byte-wise GF(2

8
) multiplications in a 32-bit word 

// multiply four bytes in GF(2^8) by {02} in parallel 

#define m1  0x80808080 

#define m2  0x7f7f7f7f 

#define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY)) 

#define upr(x, n)  (((x) << (8 * (n))) | ((x) >> (32 - 8 * (n)))) 

#define fwd_mcol(x) (g2=gf_mulx(x),g2^upr((x)^g2,3)^upr((x),2)^upr((x),1)) 

 

unsigned long g2; 

inline static void MixColumns(unsigned long *state32) 

{ 

 state32[0] = fwd_mcol(state32[0]); 

 state32[1] = fwd_mcol(state32[1]); 

 state32[2] = fwd_mcol(state32[2]); 

 state32[3] = fwd_mcol(state32[3]); 

} 

void Cipher(int Nr, int Nk, unsigned char *RoundKey, const unsigned char 

*in, unsigned char *out) 

{ 

 int round = 0; 

 unsigned long *in32 = (unsigned long *) in; 

 unsigned long *out32 = (unsigned long *) out; 

 unsigned char state[4][4]; 

unsigned long *state32 = (unsigned long *) &state[0][0]; 

 

 // Copy the input PlainText to state array. 

 state32[0] = in32[0]; 

 state32[1] = in32[1]; 

 state32[2] = in32[2]; 

 state32[3] = in32[3]; 

 

/* CODE OMITTED FOR CLARITY */ 

 

 // The encryption process is over. 

 // Copy the state array to output array. 

 out32[0] = state32[0]; 

 out32[1] = state32[1]; 

 out32[2] = state32[2]; 

 out32[3] = state32[3]; 

} 



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 7 of 13 

This modification, called aes2, has a very significant impact on cycle count and instructing GCC to 
unroll loops gives further improvements for a modest increase in program code size.  Note that aes2 
is 3x faster than aes0 on 32-bit processors, as shown below. 
 

 eSi-1600 eSi-3200 eSi-3250 

 cycles p codesize cycles p codesize cycles p codesize 

aes0 4748 624 4818 732 4606 618 

aes1 3391 776 3143 692 2918 682 

aes2 4422 1698 1602 888 1309 894 
Table 3: Cycle counts for final optimization of the standard algorithm 

Transposed State matrix 
The previous section detailed some software enhancements based on the standard algorithm.  To 
get further savings Bertoni noted in [15] that the rotation operations in MixColumns() could be 
removed by working with the transposed State matrix.  The other transformations however need to 
take the transposed matrix into account, in particular the AddRoundKey needs to operate rowwise 
instead of columnwise.  Bertoni noted that this transposed form gives about 25% saving in 
decryption and is 2% worse for encryption. 
 
A consequence of performing the operations rowwise is that ShiftRows() can now be performed with 
an efficient 32-bit barrel shift as shown below. 
 

 
Figure 9: ShiftRows can be performed with a 32-bit barrel shift if state is stored in transposed form 

In this section a new form of Bertoni’s algorithm is introduced that gives good saving in encryption, 
because it requires only 2 intermediate variables, 1 fewer XORs and the same number of GF 
multiplies as Bertoni’s method.  First the Bertoni code fragment is given below with 16 XOR, 4 GF 
multiplies and 5 intermediate variables.  We note that the y[] array, temp and state32[] array need 
to be held in registers at the same time for the state update. 
 

#define dnr(x,n)    (((x) << (32 - 8 * (n))) | ((x) >> (8 * (n)))) 

 

inline static void ShiftRows(unsigned long *state32) 

{ 

 state32[1] = dnr(state32[1], 1); 

 state32[2] = dnr(state32[2], 2); 

 state32[3] = dnr(state32[3], 3); 

} 



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 8 of 13 

 
Figure 10: Bertoni transformation of MixColumns. 

Next we present the new method which takes advantage of the fact that a variable XOR’d with itself 
is zero to remove some intermediates. 
 

 
Figure 11: Optimization of MixColumns with new implementation of Bertoni transformation 

This new method called aes3 is compared to the non-transposed form below.  Whilst the eSi-3200 
doesn’t benefit from this change, the eSi-3250 is 5% faster. 
 

 eSi-1600 eSi-3200 eSi-3250 

 cycles p codesize cycles p codesize cycles p codesize 

aes2 4422 1698 1602 888 1309 894 

aes3 3560 1678 1783 1090 1252 978 
Table 4: Cycle counts for final transposed form aes3, compared to earlier versions. 

To get a feel for how good these results really are we compare them to those of the ARM and LEON-
2 processor taking the figures from [15] and [16] 
 

inline static void MixColumns(unsigned long *state32) 

{ 

 unsigned long temp, state32_0_; 

 

 temp = state32[0] ^ state32[1] ^ state32[2] ^ state32[3]; 

 state32_0_ = state32[0]; 

 

 state32[0] ^= gf_mulx(state32[0] ^ state32[1]) ^ temp; 

 state32[1] ^= gf_mulx(state32[1] ^ state32[2]) ^ temp; 

 state32[2] ^= gf_mulx(state32[2] ^ state32[3]) ^ temp; 

 state32[3] ^= gf_mulx(state32[3] ^ state32_0_) ^ temp; 

} 

inline static void MixColumns(unsigned long *state32) 

{ 

 unsigned long y[4], temp; 

 

 y[0] = state32[1] ^ state32[2] ^ state32[3]; 

 y[1] = state32[0] ^ state32[2] ^ state32[3]; 

 y[2] = state32[0] ^ state32[1] ^ state32[3]; 

 y[3] = state32[0] ^ state32[1] ^ state32[2]; 

 

 state32[0] = gf_mulx(state32[0]); 

 state32[1] = gf_mulx(state32[1]); 

 state32[2] = gf_mulx(state32[2]); 

 state32[3] = gf_mulx(state32[3]); 

 

 temp = state32[0]; 

 state32[0] = y[0] ^ state32[0] ^ state32[1]; 

 state32[1] = y[1] ^ state32[1] ^ state32[2]; 

 state32[2] = y[2] ^ state32[2] ^ state32[3]; 

 state32[3] = y[3] ^ state32[3] ^ temp; 

} 



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 9 of 13 

CPU Version Encryption 

ARM7TDMI Transposed 1675 

Gladman 1641 

ARM9TDMI Transposed 1384 

Gladman 1374 

LEON-2 Transposed 1636 

eSi-3250 
Transposed (aes3) 1252 

Gladman (aes2) 1309 
Table 5: Cycle count comparison with other CPUs. 

The eSi-3250 is 10% more efficient than the ARM9TDMI, 31% more efficient than the ARM7TDMI 
and 30% better than LEON-2 and ARM7TDMI.  In terms of code size the only comparison is with [16], 
and the SBOX table is included for comparison with LEON-2. 
 

CPU Version Encryption 

LEON-2 Transposed 2168 bytes 

eSi-3250 
Transposed (aes3) 1234 bytes 

Gladman (aes2) 1150 bytes 
Table 6: Code size comparison with other CPUs. 

The eSi-3250 requires only 57% of the code space compared to LEON-2, because of its mixed 16/32-
bit instruction capability giving exceptional code density. 

Enhancement with custom instructions 
It is now instructive to see if this loop can be accelerated by a user-defined instruction.  On eSi-RISC 
user-defined instructions are implemented in small hardware accelerators attached to the main 
processor and able to access the register file for up to 2 input arguments and 1 output argument.  
For simple logical operations like a square root these correspond to very efficient hardware taking 
only a few logic gates.  The user-defined instructions have a “C” subroutine call prototype for simple 
integration into the code.  The actual assembly language instruction is inlined after the arguments 
are resolved to avoid the overhead of an actual function call.  In addition user-defined instructions 
can take multiple clock cycles to compute their result if required. 
 
Applying this to AES we can either add custom instructions for speeding up the aes2 or aes3 
implementations described above.  In [16] they chose to add an instruction to perform 1 byte of 
SBOX substitution and rotation within a 32-bit word, which means working with the Transposed AES 
state matrix.  This combines the ShiftRows() and SubBytes() transformations into one.  We 
implemented a 4-byte version of this instruction able to perform 4 SBOX substitutions and rotation 
in a single cycle. 
 

 
Figure 12: User defined instruction for accelerating SubBytes and ShiftRows in transposed form 

inline static void SubBytesShiftRows(unsigned long) 

{ 

 state32[0] = user3(state32[0], 0); 

 state32[1] = user3(state32[1], 1); 

 state32[2] = user3(state32[2], 2); 

 state32[3] = user3(state32[3], 3); 

} 

 



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 10 of 13 

To accelerate MixColumns() the GF multiplication and 3 XORs can be combined, leaving a final XOR 
in the C code.  We refer to this implementation as aes3SM to indicate it includes SubBytes() 
ShiftRows() and MixColumns() optimization. 
 

 
Figure 13: User defined instruction for accelerating MixColumns in transposed form. 

Similar optimizations can be performed on the untransposed form aes2, and the result of these is 
referred to as aes2SM.  The cycle counts for these optimizations are summarised below.  The cycle 
counts for the transposed form are comparable to the T-table look-up methods.  The results from 
[16], where the sbox instruction and GF multiply were accelerated are included here for comparison. 
 

CPU Version Encryption 

  cycles codesize 

eSi-3200 
aes2SM 833 496 

aes3SM 551 502 

eSi-3250 
aes2SM 745 508 

aes3SM 488 546 

LEON-2 sbox + gf2mul instr (optimized) 612 680 
Table 7: Cycle counts and codesize for hardware accelerated CPUs 

The eSi-1600 cannot be accelerated with the same user defined instructions since it only takes 16-bit 
words at a time, however it is possible to define instructions to speed AES up on 16-bit machines, 
but that is beyond the scope of this white paper. 
 
In conclusion the transposed form gives the lowest cycle count when combined with custom 
instructions, and this is comparable to T-table look-up forms.  A speed-up of 2.56x is obtained by the 
addition of custom instructions compared to the best software implementation.  In addition the 
SBOX table is no longer required in the software, and the same custom instruction can be used to 
accelerate the Key expansion.  Typical full custom hardware AES would perform the transformation 
in around 40 cycles or 12x faster but without the flexibility offered by the software version. 

Conclusion 
The AES a ubiquitous algorithm finding application in many embedded systems.  This white paper 
has examined the AES algorithm and gone through the known optimizations to achieve the highest 
software performance on a 32-bit architecture.  The eSi-RISC architecture is well suited to 
performing this function efficiently using its standard instruction set. It was shown that a novel 
modification to Bertoni’s transposed MixColumns() resulted in eSi-3250 being more efficient than  
the ARM9TDMI in terms of cycle count.  In addition code density was much better than LEON-2 
because of the mixed 16/32-bit instruction set.  To achieve higher performance the eSi-RISC user-

inline static void MixColumns(unsigned long *state32) 

{ 

 unsigned long temp, state32_0_; 

 

 temp = state32[0] ^ state32[1] ^ state32[2] ^ state32[3]; 

 state32_0_ = state32[0]; 

 

 state32[0] = user4(state32[0], state32[1]) ^ temp; 

 state32[1] = user4(state32[1], state32[2]) ^ temp; 

 state32[2] = user4(state32[2], state32[3]) ^ temp; 

 state32[3] = user4(state32[3], state32_0_) ^ temp; 

} 



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 11 of 13 

defined instructions were explored as a simple expansive mechanism for offloading computation. 
The results are summarised in the charts below. 
 

 
 

 
 
The application code is documented in this paper for reference.  A 2.56x cycle count speed up is 
achieved for a small addition of hardware, and the encryption becomes comparable to using T-
tables. 
 
Although this white paper has concentrated on AES encryption the same principles apply to the key 
schedule generation and decryption, and eSi-RISC provides a efficient solution for these also. 
 
The clear message is that exploiting the software algorithm and executing a subroutine in fewer 
cycles leads to a lower power consumption, or the ability to trade those cycles for performance in 
another part of the system. 
 
Many simple algorithms can be accelerated with the addition of small hardware modules.  By adding 
these in as custom instructions the module becomes tightly coupled with the processor and has a bit 
exact C code simulation model.  Examples of suitable algorithms include 

0 500 1000 1500 2000

ARM7TDMI

ARM9TDMI

LEON-2

eSi-3250

cycle count

Cycle counts for encryption

Transposed + HW accel

Gladman + HW accel

Transposed SW

Gladman SW

0 500 1000 1500 2000 2500

LEON-2

eSi-3250

codesize  (bytes)

Code size for encryption

Transposed + HW accel

Gladman + HW accel

Transposed SW

Gladman SW



 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 12 of 13 

 

 CRC 

 IP checksum calculation 

 Max/Min search 

 Sorting 

 Sqrt 

 Cordic 

 Data scrambler 

 Convolutional encoder 

 Viterbi and Turbo decoder 

 Sin/cosine generation 

 Galois field multiplier 

 G.711 u/A-law conversion 

 MP3 sample dequantization 

 Y’CrCb to R’G’B’ conversion 

About EnSilica 
EnSilica is an established company with many years experience providing high quality IC design 
services to customers undertaking FPGA and ASIC designs.  We have an impressive record of success 
working across many market segments  with particular expertise in multimedia and communication 
applications.  Our customers range from start-ups to blue-chip companies.  EnSilica can provide the 
full range of front-end IC design services, from System Level Design, RTL coding and Verification 
through to either a FPGA device or the physical design interface (synthesis, STA and DFT) for ASIC 
designs.  EnSilica also offer a portfolio of IP, including a highly configurable 16/32 bit embedded 
processor called eSi-RISC and the eSi-Comms range of communications IP. 

References 
1. National Institute of Standards and Technology (NIST).   Advanced Encryption Standard (AES).  

Federal Information Processing Standards (FIPS) Publication 197, Nov. 2001. 
2. IEEE Std 802.11-2007, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer 

(PHY) Specifications 
3. IEEE Std 802.15.3-2003, Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer 

(PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs) 
4. IEEE Std 802.15.4-2006, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer 

(PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs) 
5. IEEE Std 802.16-2009, Part 16: Air Interface for Broadband Wireless Access Systems 
6. IEEE Std 802.20-2008, Part 20: Air Interface for Mobile Broadband Wireless Access Systems 

Supporting Vehicular Mobility— Physical and Media Access Control Layer Specification 
7. IEEE Std 1675, Standard for Broadband over Power Line Networks:  Medium Access Control and 

Physical Layer Specifications 
8. Homeplug AV White Paper – HomePlug powerline alliance, 2005 
9. http://www.hoozi.com/Articles/AESEncryption.htm 
10. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong authentication for RFID systems using 

the AES algorithm. In Cryptographic Hardware and Embedded Systems — CHES 2004, vol. 3156 
of Lecture Notes in Computer Science, pp. 357–370. Springer Verlag, 2004. 

11. K. Atasu, L. Breveglieri, M. Macchetti.  Efficient AES Implementations for ARM Based Platforms.  
SAC’04, March 14-17, 2004, Nicosia, Cypress. 

12. D. Bernstein, P.Schwabe.  New AES software speed records.  Lecture Notes in Computer Science, 
Volume 5365/2008, Progress in Crytology – INDOCRYPT 2008. pages 322-336. SpringerLink. 

http://www.hoozi.com/Articles/AESEncryption.htm


 
 

EnSilica Limited, The Barn, Waterloo Road  © 2010 EnSilica Ltd, All Rights Reserved 
Wokingham RG40 3BY, United Kingdom  Version 1.0 
Tel: +44 (0)118 3217 310  11/01/2010 
info@ensilica.com 13 of 13 

13. B. Gladman.  A Specification for Rijndael, the AES Algorithm. Available at 
http://www.gladman.me.uk/cryptography_technology, May 2002. 

14. J. Daemen, V Rijmen.  The Design of Rijndeal. Springer-Verlag 2002. 
15. G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and S. Marchesin. Efficient Software 

Implementation of AES on 32-Bit Platforms. In B. S. K. Jr., Cetin Kaya Koc, and C. Paar, editors, 
Cryptographic Hardware and Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in 
Computer Science, pages 159–171. Springer, Berlin, Aug. 2002. 

16. S. Tillich, J. Großschadl and A. Szekely.  An Instruction Set Extension for Fast and Memory-
Efficient AES Implementation. CMS 2005, LNCS 3677, pp. 11-21, 2005. 

17. G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero and G.Palermo.  AES Power attack based on 
induced cache miss and countermeasure.  Proceedings of the 6th International Conference on 
Information Technology: Coding and Computing (ITCC 2005), pp. 586-591.  IEE Computer Society 
Press, 2005. 


